EVALUATION OF PROBIOTIC MICROENCAPSULATION IN A PREBIOTIC MIXTURE WITH COFFEE EXTRACT

Angela María Ormaza Zapata, Felix Octavio Díaz Arango, Sneyder Rodríguez-Barona

Abstract


The objective in the present study was to evaluate coffee extract as an encapsulant material, when mixed with prebiotic carbohydrates, in order to obtain a coffee-based, non-dairy probiotic beverage. Six coffee extract formulations were evaluated with maltodextrin and inulin, in various proportions, for the obtaining of microcapsules with the probiotic strain L. casei ATCC 393, by way of spray drying. The best formulations encountered were MD-INU:EXT (50:50) and EXT:Water (50:50), which were spray dried, for increased viability, elevated wettability and solubility, low hygroscopicity, and adequate morphology for this type of powdered product. The formulation was composed of maltodextrin, inulin, and coffee extract, and MD-INU:EXT (50:50) presented the best physicochemical and viability characteristics. The potential of coffee extract was proven as a wall material in microencapsulated, non-dairy, highly acidic, probiotic products. Optimal viability was achieved, in the order of 1x106 CFU/mL, for both selected formulations, which maintained functional potential for up to 11 weeks of storage.

Keywords


Probiotic; prebiotic; coffee; microencapsulation; extract

Full Text:

PDF

References


ABDALLA, A. A.; MOHAMMED, M. A.; MUDAWI H.A., Production and Quality of Instant Baobab (Adansonia digitata L.). Advance Journal of Food Science and Technology, Jartum, v. 2, n. 2, p. 125-133, 2010.

BHUSARI, S. N.; MUZAFFAR, K.; KUMAR, P. Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technology, Sangrūr, v. 266, p.354-364, 2014.

BURGAIN, J. C. et al. Encapsulation of probiotic living cells: From laboratory scale to industrial applications, Journal of Food Engineering, Nancy, v. 104, p. 467–483, 2011.

CAPARINO, O.A. et al. Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’ var.) powder, Journal of Food Engineering, Pullman, v. 111, p. 135–148, 2012.

CAPELA, P.; HAY, T. K. C.; SHAH, N. P. Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Research International, Hong Kong, v. 39, p. 203-211, 2006.

CARDONA, F. et al. Benefits of polyphenols on gut microbiota and implications in human health. The Journal of Nutritional Biochemistry, Malaga, v. 24, n. 8, p. 1415–1422, 2013.

CASSANEGO, E. et al. Lactobacillus paracasei isolated from grape sourdough: acid, bile, salt, and heat tolerance after spray drying with skim milk and cheese whey. European Food Research and Technology, Florianopolis, v. 240, n. 5, p. 977- 984, 2015.

CEBALLOS, A. M.; GIRALDO, G. I.; ORREGO, C. E. Effect of freezing rate on quality parameters of freeze dried soursop fruit pulp. Journal of Food Engineering, Manizales, v. 111, p. 360–365, 2012.

CHENG, B. et al. Influence of genotype and environment on coffee quality. Trends in Food Science & Technology, Santa Lucia, v. 57, p. 20-30, 2016.

DAS, J. K. et al. In vitro evaluation of anti-infective activity of a Lactobacillus plantarum strain against Salmonella enterica serovar Enteritidis. Gut Pathogens, Texas, v. 5, n. 11, p. 1-11, 2013.

De Araujo-Uribe, N. et al. Viability of probiotic bacteria Bacillus Polymyxa, Bacillus Megaterium and Lactobacillus Delbruekii subsp. bulgaricus microencapsulated under the spray-drying technique. DYNA, Medellín, v. 85, n. 204, p. 272-276, 2018.

DE LUCA, S. M. et al. Characterization of the effects of different roasting conditions on coffee samples of different geographical origins by HPLC-DAD, NIR and chemometrics. Microchemical Journal, Roma, v. 129, p. 348-361, 2016.

DE PRISCO, A.: MAURIELLO, G. Probiotication of foods: A focus on microencapsulation tool. Trends in Food Science & Technology, Portici, v. 48, p. 27-39, 2016.

DÍAZ, F. O.; ORMAZA, A. M.; ROJANO, B. A. Efecto de la Tostión del Café (Coffea arabica L. var. Castillo) sobre el Perfil de Taza, Contenido de Compuestos Antioxidantes y la Actividad Antioxidante, Información Tecnológica, Manizales, v. 29, n. 4, p. 31-42, 2018.

FRITZEN-FREIRE, C. B. et al. Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Research International, Florianopolis, v. 45, n. 1, p. 306-312, 2012.

GUEDES SILVAA, K. C. et al. Symbiotic microencapsulation to enhance Lactobacillus acidophilus survival. LWT - Food Science and Technology, Campinas, v. 89, p. 503–509, 2018.

HOYOS-LEYVA, J. D. et al. Physical and chemical stability of L-ascorbic acid microencapsulated into taro starch spherical aggregates by spray drying. Food Hydrocolloids, Yautepec, v. 83, p. 143-152, 2018.

JURADO-GÁMEZ, H.; GÚZMAN-INSUASTY, M. Determinación de la cinética, pruebas de crecimiento y efecto de inhibición in vitro de Lactobacillus casei en Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae y Escherichia coli. Rev Med Vet Zoot., Pasto, v. 62, n. 2, p. 23-39, 2015.

JURADO-GÁMEZ, H.; CALPA-YAMÁ , F.; CHASPUENGAL-TULCÁN, A. Determinación de parámetros cinéticos de Lactobacillus casei en dos medios probióticos. Veterinaria y Zootecnia, Pasto, v. 8, n. 2, p. 15-25, 2014.

KIM, S. J. et al. Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC 43121. LWT - Food Science and Technology, Seúl, v. 41, n. 3, p. 493-500, 2008.

LIANG, N. et al. Interactions between major chlorogenic acid isomers and chemical changes in coffee brew that affect antioxidant activities. Food Chemistry, Vancouver, v. 213, p. 251–259, 2016.

MARTÍN, M. J. et al. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science and Emerging Technologies, Granada, v. 27, p. 15–25, 2015.

NTC 3566:2011. Instituto Colombiano de Normas Técnicas y Certificación (Colombia), Café verde. Preparación de muestras para uso en análisis sensorial, p. 1-9, Bogotá, 2011.

NTC 5247: 2004. Instituto Colombiano de Normas técnicas y Certificación (Colombia), Café tostado en grano y/o molido. Determinación de la acidez titulable, p. 1-10, Bogotá, 2004.

NUÑEZ-MANCILLA, Y. et al. Osmotic dehydration under high hydrostatic pressure: Effects on antioxidant activity, total phenolics compounds, vitamin C and colour of strawberry (Fragaria vesca). LWT - Food Science and Technology, La Serena, v. 52, n. 2, p. 151-156, 2013.

RATHORE, S. et al. Microencapsulation of microbial cells. Journal of Food Engineering, Singapore, v. 116, p. 369-381, 2013.

RESOLUCIÓN 333 de 2011: Ministerio de la Protección Social (Colombia), Reglamento técnico sobre los requisitos de rotulado o etiquetado nutricional que deben cumplir los alimentos envasados para consumo humano. Bogotá, 2011.

ROCHA, J.C.G. et al. Microencapsulation by atomization of the mixture of phenolic extracts. Powder Technology, Campinas, v. 343, p. 317–325, 2019.

RODRÍGUEZ-BARONA, S., L.M. MONTES Y D. RAMIREZ. Microencapsulation of probiotic by spray drying in the presence of prebiotic. Vitae, Manizales, v. 19, n. 1, p. 185-188, 2012.

RODRÍGUEZ-RESTREPO, Y.A.; GIRALDO, G.I; RODRÍGUEZ-BARONA, S. Solubility as a fundamental variable in the characterization of wall material by spray drying of food components: Application to microencapsulation of Bifidobacterium animalis subsp. Lactis. J Food Process Eng, Manizales, v. 40, p. 1-8, 2017.

ROUF, S. A.; JAN, T.; SHARMA, P. Non-Dairy Probiotics – An Emerging Trend in Health Care Products. International Journal of Current Microbiology and Applied Sciences, Shalimar, v. 7, n. 10, p. 131-145, 2018.

SEQUERA, S. C.; RUIZ, Y.; MORENO, F. L.; QUINTANILLA-CARVAJAL, M. X.; SALCEDO, F. Rheological evaluation of gelation during thermal treatments in block freeze concentration of coffee extract. Journal of Food Engineering, Bogotá, v. 242, p. 76–83, 2019.

SOLANKI, H.K. et al. Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. BioMed Research International, Patan, v. 5, p. 1–21, 2013.

SOUKOULIS, C. et al. Stability of Lactobacillus rhamnosus GG in prebiotic edible films. Food Chem., Leicestershire, v. 15, n. 159, p. 302-308, 2014.

SUN, X.; CAMERON, R. G.; BAI, J. Microencapsulation and antimicrobial activity of carvacrol in a pectinalginate matrix. Food Hydrocolloids, Pierce, v. 92, p. 69–73, 2019.

VOS, P. et al. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, Wageningen, v. 20, p. 292–302, 2010.

YE, Q.; GEORGES, N.; SELOMULYA, C. Microencapsulation of active ingredients in functional foods: From research stage to commercial food products. Trends in Food Science & Technology, Victoria, v. 78, p. 167-179, 2018.

YONEKURA, L. et al. Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fiber by spray drying: Technological characterization, storage stability and survival after in vitro digestion. Journal of Functional Foods, Loughborough, v. 6, p. 205-214, 2014.

ZAPATA, K., CORTÉS, F. B.; ROJANO, B. A. Polifenoles y Actividad Antioxidante del Fruto de Guayaba Agria (Psidium araca). Información Tecnológica, Medellín, v. 24, n. 5, p. 103-112, 2013.




DOI: http://dx.doi.org/10.25186/cs.v14i3.1598

Refbacks

  • There are currently no refbacks.