Physiological aspects and yield in coffee progenies with large beans

Authors

DOI:

https://doi.org/10.25186/.v16i.1808

Abstract

Genetic coffee breeding is aimed at increasing yield associated with tolerance or resistance to biotic and abiotic factors, besides providing a better beverage quality and supplying the demand for bigger beans. The efficiency in photosynthetic activity can limit produce and diversify genotypes, mainly under adverse environmental conditions. Consequently, the importance of selection of Coffea arabica L. regarding these characteristics stands out. Therefore, the objective of this paper was to measure the physiological characterization and yield of Coffea arabica L. progenies with large beans “Big Coffee VL”. Twelve productive progenies were selected and classified according to fruit size (“small”, “medium” and “large”), which were: S14, S23, S34, S36, M4, M5, M14, M20, L10, L12, L17 and L31. Net photosynthetic rate (A), stomatal conductance (gs), transpiration rate (E), water use efficiency (WUE), internal carbon (Ci), intercellular CO2 concentration in the mesophyll were evaluated on the current external CO2 concentration (Ci/Ca), besides vapor pressure deficit (VPD), leaf temperature (Tleaf), indirect determination of the relative levels of chlorophylls a, b and total, in addition to bean yield in two crops. The Tocher grouping resulted in the formation of 4 groups, and progenies M4, L10 and S34 remained in isolated groups. Progeny L10 stood out for higher mean values of A, gs and Ci; the opposite behavior was observed in progeny S34. Progeny M4 is noteworthy as the one with the highest yield in the two years considered, in addition to presenting high photosynthetic rate and chlorophyll indexes. It is concluded that the progenies of “Big Coffee VL” show variability for physiological parameters and productivity. Progenies S14, M4 and L10 stood out, and S14 was more efficient in the use of water; M4 was the most productive and L10 stood out in terms of gas exchange.

Key words: Chlorophyll; Coffea arabica L.; Gas exchange; Genetic breeding.

References

BARBIERI JÚNIOR, E. et al. Um novo clorofilômetro para estimar os teores de clorofila em folhas do capim Tifton 85. Ciência Rural, 42(12): 2242-2245, 2012.

CARVALHO, C. H. S. de. et al. Cultivares de café arábica de porte baixo. In: CARVALHO, C. H. S. de. (Ed.). Cultivares de café: Origem, características e recomendações. Brasília, DF: EMBRAPA Café, 2008. 334p.

CASTANHEIRA, D. T. et al. Potencial de utilização de características anatômicas e fisiológicas na seleção de progênies de cafeeiro. Coffee Science, 11(3):375-386, 2016.

CILAS, C.; MONTAGNON, C.; BAR-HEN, A. Yield stability in clones of Coffea canephora in the short and medium term: Longitudinal data analyses and measures of stability over time. TreeGenetics&Genomes, 7(2):421-429, 2011.

COMPANHIA NACIONAL DE ABASTECIMENTO - CONAB. Acompanhamento da safra brasileira de café de 2020. Brasília, 2020. Available in: . Access in: March, 23, 2021.

CONSELHO DOS EXPORTADORES DE CAFÉ DO BRASIL - CECAFE. Relatório mensal outubro 2018. Available in: <http://www.cecafe.com.br >. Access in: November, 28, 2018.

CRUZ, C. D. GENES - a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum. Agronomy, 35(3):271-276, 2013.

DALASTRA, G. M. et al. Trocas gasosas e produtividade de três cultivares de meloeiro conduzidas com um e dois frutos por planta. Bragantia, 73(4):365-371, 2014.

DAMATTA, F. M. et al. Sustained enhancement of photosynthesis in coffee trees grown under free-air CO2 enrichment conditions: Disentangling the contributions of stomatal, mesophyll, and biochemical limitations. Journal of Experimental Botany, 67(1):341-352, 2016.

DAMATTA, F. M. et al. Why could the coffee crop endure climate change and global warming to a greater extent than previously estimated? ClimateChange, 152(1):167-178, 2019.

DE CAMARGO, A. P.; DE CAMARGO, M. B. P. Definição e esquematização das fases fenológicas do cafeeiro arábica nas condições tropicais do Brasil. Bragantia, 60(1):65-68, 2001.

DURAND, M. et al. Altered stomatal dynamics induced by changes in irradiance and vapor-pressure deficit under drought: impacts on the whole-plant transpiration efficiency of poplar genotypes. New Phytologist, 222(4):1798-1802, 2019.

FERNANDES, A. L. T. et al. A moderna cafeicultura dos cerrados brasileiros. Pesquisa Agropecuária Tropical, 42(2):232-240, 2012.

FERREIRA, A. D. et al Desempenho agronômico de seleções de café Bourbon Vermelho e Bourbon Amarelo de diferentes origens. Pesquisa Agropecuária Brasileira, 48(4):388-394, 2013.

FRIENDLY, M.; FOX, J. Candisc: Visualizing generalized canonical discriminant and canonical correlation analysis. R package version 0.8-0. 2017.Available in: <https://cran.r-project.org/web/packages/candisc>. 2017.Access in: Jul, 08, 2020.

GARCIA, N. et al. Waterlogging tolerance of five soybean genotypes through different physiological and biochemical mechanisms. Environmental and Experimental Botany, 172:e103975, 2020.

GIL, P. T. et al. Índice SPAD para o diagnóstico do estado de nitrogênio e para o prognóstico da produtividade da batata. Horticultura Brasileira, 20(4):611-615, 2002.

INSTITUTO NACIONAL DE METEOROLOGIA - INMET. BDMEP dados históricos.2021. Available in: <http://www.inmet.gov.br/portal/>. Access in: March, 25, 2021.

LEMOS, J. P. et al. Morfologia de plantas de milho em competição com picão-preto e trapoeraba submetidas a roçada. Planta Daninha, 30(3):487-496, 2012.

LI, J. et al. Seasonal change in response of stomatal conductance to vapor pressure deficit and three phytohormones in three tree species. Plant Signaling & Behavior, 14(12):e1682341, 2019.

PEDROSA, A. W. et al. Crescimento de cultivares de café em resposta a doses contrastantes de zinco. Coffee Science, 8(3): 295-305, 2013.

PEREIRA, F. A. C. et al. Selection of coffee progenies with large beans resistant to rust and cercospora leaf spot. Coffee Science, 14(1):67-75, 2019.

R DEVELOPMENT CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Version 4.0.3 2020. Vienna, Austria. Available in: <http://www.R-project.org/>. Access in: Jul, 08, 2020.

RAO, C. R. Advanced statistical methods in biometric research. New York: Willey, 1952. 390p.

REIS, E. A. C. et al. Characterization of coffee cultivars leaf rust-resistant subjected to framework pruning. Coffee Science, 13(1):63-70, 2018.

RENA, A. B.; MAESTRI, M. Fisiologia do cafeeiro. Informe Agropecuário, 11(126):26-40, 1985.

RICCI M. S. F.; JUNIOR C. D. G.; ALMEIRA F. F. D. Condições microclimáticas, fenologia e morfologia externa de cafeeiros em sistemas arborizados e a pleno sol. Coffee Science, 8(3):379-388, 2013.

RODRIGUES, W. P. et al. Whole-canopy gas exchanges in Coffea sp. is affected by supra-optimal temperature and light distribution within the canopy: The insights from an improved multi-chamber system. Scientia Horticulturae, 211:194-202, 2016.

SAKIYAMA, N. et al. Café arábica do plantio a colheita. Viçosa, Editora UFV, 2015. 316p.

SHIMAZAKI, K. I. et al. Light regulation of stomatal movement. Annual Review of Plant Biology, 58(1):219-247, 2007.

SILVA, J. et al. Genetic diversity among coffee tree progenies big coffee VL based on growth traits and production. Genetics and Molecular Research, 15(4):1-8, 2016.

SILVA ÁVILA, E. A. da.et al. Relationship of gas exchanges in different phenological phases with coffee productivity in the Cerrado. Research, Society and Development, 9(7):e293974123, 2020.

SOUZA, B. P. de. et al. Gas exchanges and chlorophyll fluorescence of young coffee plants submitted to water and nitrogen stresses. Journal of Plant Nutrition, 43(16):2455-2465, 2020.

SOUZA, T. M. A. et al. Crescimento e trocas gasosas do feijão caupi cv. BRS pujante sob níveis de água disponível no solo e cobertura morta. Irriga, 21(4):796-805, 2016.

TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 5ª edição. Porto Alegre: Artmed, 2013. 918p.

TATAGIBA, S. D.; PEZZOPANE, J. E. M.; REIS, E. F. Fotossíntese em Eucalyptus sob diferentes condições edafoclimáticas. Engenhariana Agricultura, 23(4): 336-345, 2015.

VAAST, P. et al. Fruit load and branch ring-barking affect carbon allocation and photosynthesis of leaf and fruit of Coffea arabica in the field. Treephysiology, 25(6):753-760, 2005.

VENTURIN, R. P. et al. A pesquisa e as mudanças climáticas n cafeicultura. Informe Agropecuário, 34:34-43, 2013.

Downloads

Published

2021-06-23

How to Cite

SILVA PAVAN, J. P.; SANTOS, C. S. dos .; FREITAS, A. F. de .; CARVALHO, S. P. de .; CARVALHO, G. R. . Physiological aspects and yield in coffee progenies with large beans. Coffee Science - ISSN 1984-3909, [S. l.], v. 16, p. e161808, 2021. DOI: 10.25186/.v16i.1808. Disponível em: http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/1808. Acesso em: 30 sep. 2022.