Sensory analysis and mid-infrared spectroscopy for discriminating roasted specialty coffees




In general, the process of roasting coffee uses a rotated fix drum or fluidized bed. Theoretically, the fluidized bed can provide more homogenous roastings throughout the process. Thus, in this study, we analyzed the sensorial and chemical attributes for two different coffees submitted to three roasting profiles using fluidized bed roaster. The coffees were roasted for a high temperature for a short time (HTST), medium temperature for a medium time (MTMT), and low temperature for a long time (LTLT). Sensory analysis was performed on the roasted coffees according to the SCA methodology and chemical analysis through mid-infrared spectroscopy. The results of sensory analysis indicated a preference for MTMT roasting for coffee grown at high altitude and HTST roasting for coffee grown at low altitude. Chemically, coffees show that LTLT and MTMT roasts are most distant from each other in their chemical composition when roasting low altitude coffee, whereas the HTST and MTMT roasts are the most distant from each other when roasting high altitude coffee.

Key words: Arabica coffee; Coffee roasting; Infrared spectroscopy; Specialty coffee.

Author Biography

Lucas Louzada Pereira, Instituto Federal do Espírito Santo/IFES, Venda Nova do Imigrante, ES, Brasil.

Doutorando em Engenharia de Produção pela Universidade Federal do Rio Grande Sul, M.Sc Eng de Produção pela UENF. Professor do Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo, IFES, campus Venda Nova do Imigrante. Trabalho com pesquisas voltadas para o controle de qualidade e produção na agricultura, bem como os processos de inovação e transferência de tecnologia, tendo como pano de fundo a cafeicultura, com enfoque nas abordagens de produção de cafés especiais e micro lotes.


BAQUETA, M. R.; COQUEIRO, A.; VALDERRAMA, P. Brazilian coffee blends: A simple and fast method by near‐infrared spectroscopy for the determination of the sensory attributes elicited in professional coffee cupping. Journal of food science, 84(6):1247-1255, 2019.

BAQUETA, M. R. et al. Multivariate classification for the direct determination of cup profile in coffee blends via handheld near-infrared spectroscopy. Talanta, 222:121526, 2021a.

BAQUETA, M. R. et al. Integrated 1H NMR fingerprint with NIR spectroscopy, sensory properties, and quality parameters in a multi-block data analysis using ComDim to evaluate coffee blends. Food Chemistry, 355:129618, 2021b.

BODNER, M. et al. Effect of harvesting altitude, fermentation time and roasting degree on the aroma released by coffee powder monitored by proton transfer reaction mass spectrometry. European Food Research and Technology, 245(7):1499-1506, 2019.

CHIN, S. T. Et al. Identification of potent odourants in wine and brewed coffee using gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 1218(42):7487-7498, 2011.

CONLEY, J.; WILSON, B. Coffee terroir: Cupping description profiles and their impact upon prices in Central American coffees. GeoJournal, 85:67-79, 2020.

CRAIG, A. P. et al. Mid infrared spectroscopy and chemometrics as tools for the classification of roasted coffees by cup quality. Food Chemistry, 245:1052-1061, 2018.

ESTEBAN-DÍEZ, I.; GONZÁLEZ-SÁIZ, J. M.; PIZARRO, C. Prediction of sensory properties of espresso from roasted coffee samples by near-infrared spectroscopy. Analytica Chimica Acta, 525(2):171-182, 2004.

FERREIRA, L. T.; SANTOS, J. Taxa de crescimento do consumo mundial de café de 2% ao ano projeta 208 milhões de sacas até 2030. EMBRAPA, 2019. Available in: <>. Access in: October 20, 2020.

GIACALONE, D. et al. Common roasting defects in coffee: Aroma composition, sensory characterization and consumer perception. Food Quality and Preference, 71:463-474, 2019.

GLOESS, A. N. et al. Evidence of different flavour formation dynamics by roasting coffee from different origins: On-line analysis with PTR-ToF-MS. International Journal of Mass Spectrometry, 365:324-337, 2014.

IKAWA Coffee. For professionals. 2020. Available in: Access in: October 20, 2020.

JOËT, T. et al. Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans. Food chemistry, 118(3):693-701, 2010.

KURNIAWAN, M. F. et al. Metabolomic approach for understanding phenolic compounds and melanoidin roles on antioxidant activity of Indonesia robusta and arabica coffee extracts. Food science and biotechnology, 26(6):1475-1480, 2017.

MARTINS, P. M. M. et al. Coffee growing altitude influences the microbiota, chemical compounds and the quality of fermented coffees. Food Research International, 129:108872, 2020.

MOREIRA, R. F. A.; TRUGO, L. C.; DE MARIA, C. A. B. Componentes voláteis do café torrado. Parte II. Compostos alifáticos, alicíclicos e aromáticos. Química Nova, 23(2):195-203, 2000.

OLIVEIRA, E. C. S. da. et al. Espectroscopia de infravermelho para estudo de café conilon fermentado Infrared spectroscopy for the study of fermented conilon coffee. Brazilian Journal of Development, 6(4):19248-19259, 2020.

PAVIA, D. L.; LAMPMAN, G. M.; KRIZ, G. S. Introduction to Spectroscopy. 3rd ed. Thomson Learning, Orlando, USA, 2014. 784p.

PEREIRA, L. L. et al. The consistency in the sensory analysis of coffees using Q-graders. European Food Research and Technology, 243(9):1545-1554, 2017.

PEREIRA, L. L. et al. Very beyond subjectivity: The limit of accuracy of Q‐Graders. Journal of texture studies, 50(2):172-184, 2019.

PEREIRA, L. L. et al. New propositions about coffee wet processing: Chemical and sensory perspectives. Food Chemistry, 310:125943, 2020.

PIMENTA, C. J.; ANGÉLICO, C. L.; CHALFOUN, S. M. Challengs in coffee quality: Cultural, chemical and microbiological aspects. Ciência e Agrotecnologia, 42(4):337-349, 2018.

POISSON, L. et al. The chemistry of roasting-decoding flavor formation. In: FOLMER B. The Craft and Science of Coffee. London: Elsevier Science, 2017, p 273-309.

PRAMUDITA, D. et al. Roasting and colouring curves for coffee beans with broad time-temperature variations. Food and Bioprocess Technology, 10(8):1509-1520, 2017.

PUTRA, S. A.; HANIFAH, U.; KARIM, M. A. Theoretical study of fluidization and heat transfer on fluidized bed coffee roaster. AIP Conference Proceedings, 2097(1):1-7, 2019.

SANTOS, J. R. et al. Exploiting near infrared spectroscopy as an analytical tool for on-line monitoring of acidity during coffee roasting. Food Control, 60:408-415, 2016.

SPECIALTY COFFEE ASSOCIATION OF AMERICA - SCAA. SCAA Cupping protocols. 2008. Available in: <> Access in: June, 14, 2020.

SCHENKER, S. et al. Pore structure of coffee beans affected by roasting conditions. Journal of Food Science, 65(3):452-457, 2000.

SCHENKER, S.; ROTHGEB, T. The roast-creating the beans’ signature. In: FOLMER, B. The craft and science of coffee. London: Elsevier Science. p. 245-271, 2017.

SILVERSTEIN, R. M.; WEBSTER, F. X.; KIEMLE, D. J. Spectrometric identification of organic compounds. New York: John Wiley & Sons, 2005. 464p.

TAVARES, K. M. et al. Espectroscopia no infravermelho médio e análise sensorial aplicada à detecção de adulteração de café torrado por adição de cascas de café. Química Nova, 35(6):1164-1168, 2012.

WANG, X.; LIM, L. T. Effect of roasting conditions on carbon dioxide degassing behavior in coffee. Food research international, 61:144-151, 2014.

WORKU, M. et al. Effect of altitude on biochemical composition and quality of green arabica coffee beans can be affected by shade and postharvest processing method. Food Research International, 105:278-285, 2018.

YANG, N. et al. Determination of volatile marker compounds of common coffee roast defects. Food Chemistry, 211:206-214, 2016.

ZHANG, C. et al. Mid-Infrared spectroscopy for coffee variety identification: comparison of pattern recognition methods. Journal of Spectroscopy, 2016:7927286, 2016




How to Cite

DEBONA, D. G.; OLIVEIRA, E. C. da S.; TEN CATEN, C. S.; GUARÇONI, R. C.; MOREIRA, T. R.; MORELI, A. P.; PEREIRA, L. L. Sensory analysis and mid-infrared spectroscopy for discriminating roasted specialty coffees. Coffee Science - ISSN 1984-3909, [S. l.], v. 16, p. e161878, 2021. DOI: 10.25186/.v16i.1878. Disponível em: Acesso em: 24 jun. 2022.