Effect of tropical millipede Rhinocricus botocudus in the degradation and maturity of coffee residues

Authors

  • Victor Maurício da Silva Universidade Federal do Espírito Santo/UFES, Vitória, ES, Brasil. https://orcid.org/0000-0001-9070-384X
  • Renato Ribeiro Passos Universidade Federal do Espírito Santo/UFES, Departamento de Agronomia, Centro de Ciências Agrárias, Alegre, ES, Brasil. https://orcid.org/0000-0001-7730-748X
  • Ericka Broetto Marin Universidade Federal do Espírito Santo/UFES, Vitória, ES, Brasil. https://orcid.org/0000-0001-9070-384X
  • Eduardo de Sá Mendonça Universidade Federal do Espírito Santo/UFES, Departamento de Agronomia, Centro de Ciências Agrárias, Alegre, ES, Brasil. https://orcid.org/0000-0003-3284-7129

DOI:

https://doi.org/10.25186/.v16i.1932

Abstract

In Brazil, approximately 3 tons of dry mass per hectare of coffee residues (CR), formed by leaves and branches <5 mm in diameter, were accumulated around the crops in the last harvests of the semi-mechanized crops. Thus, the production of substrates and organic fertilizers from the bioconversion of residues of coffee activity is an important theme in Brazil and in the world. The objective of the study was to investigate the effectiveness of the tropical millipede Rhinocricus botocudus on the degradation and maturity of coffee residues (CR). The presence and absence of R. botocudus were tested in five sampling times (0, 30, 60, 90, and 120 days) with three replicates (n = 3). The analyzed variables were: total C and N contents, lignin, cellulose, soluble C and N, soluble polyphenols, C of humic substances, and infrared analysis of humic acid (HA) and fulvic acid (FA). At the final incubation stage (120 days), the lowest values of cellulose, cellulose/lignin, and polyphenols occurred with R. botocudus. Infrared analysis of HA demonstrated that readily biodegradable structures, such as alcohols and short chain aliphatic molecules, were decomposed over time, consequently reflecting the increase of aromatic structures of greater stability. Compared to the control, these changes in HA were more evident in the presence of R. botocudus. The results of the present study suggest that this millipede species alters the dynamics of degradation and humification of CR by accelerating the maturity of this residue.

Key words: Cellulose; humic substances; lignin.

References

ALIDADI, H. et al. Waste recycling by vermicomposting: Maturity and quality assessment via dehydrogenase enzyme activity, lignin, water soluble carbon, nitrogen, phosphorous and other indicators. Journal of Environmental Management, 182:134-140, 2016.

AMBARISH, C. N.; SRIDHAR, K. R. Production and quality of pill-millipede manure: a microcosm study. Agricultural Research, 2:258-264, 2013.

ANDERSON, J. D; INGRAM, J. S. I. Tropical soil biology and fertility: A handbook of methods. 2 nd ed. Wallingford (UK): CAB International. 1996. 221p.

ANTIL, R. S. et al. Evaluation of maturity and stability parameters of composts prepared from organic wastes and their response to wheat. Waste Biomass Valorization, 4:95-104, 2013.

ANTUNES, L. F. S. et al. Production and efficiency of organic compost generated by millipede activity. Ciência Rural, 46(5):815-819, 2016.

ANTUNES, R. M. et al. Transformações químicas dos ácidos húmicos durante o processo de vermicompostagem de resíduos orgânicos. Engenharia Sanitária e Ambiental, 20(4):699-708, 2015.

BADDI, G. A. et al. Characterization of fulvic acids by elemental and spectroscopic (FTIR and 13C-NMR) analyses during composting of olive mill wastes plus straw. Bioresource Technology, 93(3):285-290, 2004.

BERNAL, M. P. et al. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology, 63(1):91-99, 1998.

BIANCHI, M. O.; CORREIA, M. E. Mensuração do consumo de material vegetal depositado sobre o solo por diplópode. Rio de Janeiro (BR): EMBRAPA Agrobiologia. 2007. 4p. (Embrapa Agrobiologia. Circular Técnica, 20).

BRAGANÇA, S. M. et al. Acumulação de matéria seca pelo cafeeiro conilon. Revista Ceres, 57(1):48-52, 2010.

BREMNER, J. M.; MULVANEY, C. S. Total nitrogen, in: PAGE, A. L. (Ed.), Methods of soil analysis. Madison (US): American Society of Agronomy, p. 595-624, 1982.

BUSWELL, J. A.; ODIER E. Lignin biodegradation. Critical Reviews in Biotechnology, 6(S1):1-60, 1995.

CASTALDI, P.; GARAU, G.; MELIS, P. Maturity assessment of compost from municipal solid waste through the study of enzyme activities and water-soluble fractions. Waste Management, 28(3):534-540, 2008.

CHANYASAK, V.; KUBOTA, H. Carbon/organic nitrogen ratio in water extract as measure of composting degradation. Journal of Fermentation Technology, 59:215-219, 1981.

CHAREST, M. H.; ANTOUN, H.; BEAUCHAMP, C. J. Dynamics of water-soluble carbon substances and microbial populations during the composting of de-inking paper sludge. Bioresource Technology, 91(1):53-67, 2004.

CIAVATTA, C. et al. Determination of organic carbon in aqueous extracts of soils and fertilizers. Communications Soil Science and Plant Analysis, 22(9-10):1467-1476, 1991.

COÛTEAUX, M. M.; ALOUI, A.; KURZ-BESSON, C. Pinus halepensis litter decomposition in laboratory microcosms as influenced by temperature and a millipede, Glomeris marginata. Applied Soil Ecology, 20(2):85-96, 2002.

DELMER, D. P.; AMOR, Y. Cellulose biosynthesis. The Plant Cell, 7(7):987-1000, 1995.

DEV, R.; ANTIL, R. S. Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes. Bioresource Technology, 102:2868-2873, 2011.

DIAS, B. O. et al. Use of biochar as bulking agent for the composting of poultry manure: Effect on organic matter degradation and humification. Bioresource Technology, 101(4):1239-1246, 2010.

DOMÍNGUEZ, J.; GÓMEZ-BRANDÓN, M. The influence of earthworms on nutrient dynamics during the process of vermicomposting. Waste Management & Research, 31(8):859-868, 2013.

DOMÍNGUEZ, J. et al. Vermicomposting grape marc yields high quality organic biofertiliser and bioactive polyphenols. Waste Management & Research, 32:1235-1240, 2014.

FARAH, A.; DONANGELO, C. M. Phenolic compounds in coffee. Brazilian Journal of Plant Physiology, 18(1):23-36, 2006.

FERNÁNDEZ-GÓMEZ, M. J. et al. Continuous-feeding vermicomposting as a recycling management method to revalue tomato-fruit wastes from greenhouse crops. Waste Management, 30(12):2461-2468, 2010.

GERASIMOVWICZ, W. V.; BAYLER, D. F. Carbon-13 CPMAS NMR and FTIR spectroscopic studies of humic acids. Soil Science, 139(3):270-278, 1985.

GRIGATTI, M.; CIAVATTA, C.; GESSA, C. Evolution of organic matter from sewage sludge and garden trimming during composting. Bioresource Technology, 91(2):163-169, 2004.

HIRAI, M. F.; CHANYASAK, V.; KUBOTA, H. A standard method for measurement of compost maturity. Biocycle, 24:54-56, 1983.

HOPKIN, S. P.; READ, H. J. The biology of millipedes. Oxford (UK): Oxford University Press. 1992. 248p.

HUANG, G. F. et al. Transformation of organic matter during co-composting of pig manure with sawdust. Bioresource Technology, 97:1834-1842, 2006.

HUE, N. V.; LIU, J. Predicting compost stability. Compost Science & Utilization, 3(2):8-15, 1995.

INBAR, Y.; CHEN, Y.; HADAR, Y. Humic substances formed during the composting of organic matter. Soil Science Society of America Journal, 54(5):1316-1323, 1990.

KALISZ, P. J.; POWELL, J. E. Effect of calcareous road dust on land snails (Gastropoda: Pulmonata) and millipedes (Diplopoda) in acid forest soils of the Daniel Boone National Forest of Kentucky, USA. Forest Ecology and Management, 186(1-3):177-183, 2003.

KARTHIGEYAN, M.; ALAGESAN, P. Millipede composting: A novel method for organic waste recycling. Recent Research in Science and Technology, 3(9):62-67, 2011.

KOMILIS, D. P.; HAM, R. K. The effect of lignin and sugars to the aerobic decomposition of solid wastes. Waste Management, 23(5):419-423, 2003.

LOPEZ, M. J. et al. The effect of aeration on the biotransformation of lignocellulosic wastes by white-rot fungi. Bioresource Technology, 81(2):123-129, 2002.

MUPONDI, L. T.; MNKENI, P. N. S.; MUCHAONYERWA, P. Effects of a precomposting step on the vermicomposting of dairy manure–waste paper mixtures. Waste Management & Research, 29(2):219-228, 2011.

NARDI, S. et al. Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry, 34(11):1527-1536, 2002.

PARADELO, R. et al. Evolution of organic matter during the mesophilic composting of lingocellulosic winery wastes. Journal of Environmental Management, 116:18-26, 2013.

PARTHASARATHI, K. et al. Potential of Perionyxex cavatus (Perrier) in lignocellulosic solid waste management and quality vermifertilizer production for soil health. International Journal of Recycling Organic Waste in Agriculture, 5:65-86, 2016.

PLAZA, C. et al. Organic matter humification by vermicomposting of cattle manure alone and mixed with two-phase olive pomace. Bioresource Technology, 99(11):5085-5089, 2008.

RAMANATHAN, B.; ALAGESAN, P. Evaluation of millicompost versus vermicompost. Current Science, 103:140-143, 2012.

RAWLINS, A. J. et al. Stabilisation of soil organic matter in invertebrate faecal pellets through leaf litter grazing. Soil Biology and Biochemistry, 39(5):1202-1205, 2007.

RAWLINS, A. J. et al. The biochemical transformation of oak (Quercus robur) leaf litter consumed by the pill millipede (Glomeris marginata). Soil Biology and Biochemistry, 38:1063-1076, 2006.

SALGADO, P. R. et al. Total phenol concentrations in coffee tree leaves during fruit development. Scientia Agricola, 65(4):354-359, 2008.

SCHUBART, O. Novas espécies brasileiras da Familia Rhinocricidae (Diplopoda, Opisthos permophora). Anais da Academia Brasileira de Ciências, 34:69-87, 1962.

SEMENYUK, I. I.; TIUNOV, A. V.; GOLOVATCH, S. I. Structure of mandibles in relation to trophic niche differentiation in a tropical millipede community. International Journal of Myriapodology, 6:37-49, 2011.

SRIDHAR, K. R.; AMBARISH, C. N. Pill millipede compost: A viable alternative to utilize urban organic solid waste. Current Science, 104(11):1543-1547, 2013.

STEVENSON, F. J. Humus Chemistry: Genesis, Composition Reactions. New York (US): Wiley-Interscience. 1994. 512p.

SUBHEDAR, P. B.; GOGATE, P. R. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrasonics Sonochemistry, 21(1):216-225, 2014.

SVYRYDCHENKO, A. O.; BRYGADYRENKO, V. V. Trophic preferences of Rossiulus kessleri (Diplopoda, Julidae) for the litter of various tree species. Folia Oecologica, 41(2):202-212, 2014.

TAHERZADEH, M. J.; KARIMI, K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9(9):1621-1651, 2008.

TAJOVSKÝ, K. et al. Decomposition of faecal pellets of the millipede Glomeris hexasticha (Diplopoda) in forest soil. Pedobiologia, 36(3):146-158, 1992.

TAYLOR, E. C.; CRAWFORD, C. S. Microbial gut symbionts and desert detritivores. Arid Zone Research, 1:37-52, 1982.

TEDESCO, M. J. et al. Análise de solo, plantas e outros materiais. 2nd ed. Porto Alegre (BR): UFRGS. 1995. 174p.

TORTOSA, G. et al. The production of commercial organic amendments and fertilisers by composting of two-phase olive mill waste (“alperujo”). Journal of Cleaner Production, 26:48-55, 2012.

URBASEK, F.; TAJOVSKÝ, K. The influence of food and temperature on enzymatic activities of the millipede Glomeris hexasticha (Diplopoda). Revue d'Ecologie et de Biologie du Sol, 28(2):155-163, 1991.

UNITED STATES DEPARTMENT OF AGRICULTURE - USDA. Departament of agriculture, soil survey staff. Web Soil Survey, Natural Resources Conservation Service. USDA. Available in: http:/websoilsurvey.nrcs.usda.gov.> Access in: 2020.

VAN SOEST, P.; WINE, R. H. Development of a comprehensive system of feed analysis and its applications to forages. Journal of Agricultural and Food Chemistry, 51:780-785, 1968.

WALKLEY, A.; BLACK, I. A. An examination of the Deytjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37(1):29-38, 1934.

WU, L.; MA, L.; MARTINEZ, G. Comparison of methods for evaluating stability and maturity of biosolids compost. Journal of Environmental Quality, 29(2):424-429, 2000.

YAMADA, Y.; KAWASE, Y. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption. Waste Management, 26(1):49-61, 2006.

YAN, Z. et al. The effects of initial substrate concentration, C/N ratio, and temperature on solid-state anaerobic digestion from composting rice straw. Bioresource Technology, 177:266-273, 2015.

ZHOU, Y. et al. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues. Bioresource Technology, 168:229-234, 2014.

ZMORA-NAHUM, S. et al. Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biology Biochemistry, 37(11):2109-2116, 2005.

ZMORA-NAHUM, S. et al. Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biology Biochemistry, 37(11):2109-2116, 2005.

Downloads

Published

2021-12-09

How to Cite

SILVA, V. M. da .; PASSOS, R. R.; MARIN, E. B.; MENDONÇA, E. de S. Effect of tropical millipede Rhinocricus botocudus in the degradation and maturity of coffee residues. Coffee Science - ISSN 1984-3909, [S. l.], v. 16, p. e161932, 2021. DOI: 10.25186/.v16i.1932. Disponível em: http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/1932. Acesso em: 24 jun. 2022.