Manganese and fluorine suppress bacterial blight on coffee seedlings grown in a nutrient solution


  • Jeanny Alice Velloso Universidade Federal de Lavras/UFLA, Departamento de Fitopatologia/DFP, Lavras, MG, Brasil.
  • Edson Ampelio Pozza Universidade Federal de Lavras/UFLA, Departamento de Fitopatologia/DFP, Lavras, MG, Brasil.
  • Adélia Aziz Alexandre Pozza Universidade Federal de Lavras/UFLA, Departamento de Ciências do Solo/DCS, Lavras, MG, Brasil.
  • Humberson Rocha Silva Universidade Federal Rural de Pernambuco/UFRPE, Departamento de Fitopatologia, Recife, PE, Brasil.
  • Cristian David Plaza Pérez Universidad de la Amazonia, Doctorado en Educación y Cultura Ambiental/DECA, Florencia, Caquetá, Colômbia.
  • José Otávio Gusmão de Souza Universidade Federal de Lavras/UFLA, Departamento de Fitopatologia/DFP, Lavras, MG, Brasil.



The use of manganese (Mn) and fluorine (F) in the management of bacterial blight were evaluated in coffee seedlings grown in a nutrient solution. The experiment was carried out with the cultivar Catuaí Vermelho IAC 99. The treatments consisted of the combination of five doses of Mn with five of F, applied via leaf, using Mn sulfate and sodium fluoride, in a 5x5 factorial scheme. The plants were inoculated with bacterial suspension seven days after foliar application of F and Mn doses. The incidence and severity assessments were performed at an interval of 24 hours for 10 days. Photosynthetic activity was assessed using the infrared gas analyzer. Stomatal conductance, photosynthesis, transpiration, PAR radiation and internal CO2 were analyzed. The chlorophyll content was calculated indirectly. The leaf analysis was performed by digestion in HNO3 to determine the levels of Mn. Variables
such as Area Under Incidence Disease Progress (AUIDP), Area Under Severity Disease Progress (AUSDP), chlorophyll a, b, and total concentrations and photosynthesis were submitted to the Shapiro-Wilk test. The treatment means were subjected to linear regression analysis. Data were analyzed using software R. There was a significant interaction (P <0.05) between the concentrations of Mn and F for the AUIDP and (AUSDP). Doses between 0.7 and 1.4 g L-1 of Mn combined with doses of 0.10 to 0.12 g L-1 of F were more effective in suppressing the bacterial blight, after analysis for both variables. The increase in Mn concentrations in leaves reduced liquid photosynthesis. The interaction between Mn and F suppressed the bacterial blight intensity of the coffee plants in nutrient solution.

Key words: Coffea arabica L.; Mineral nutrition; Epidemiology; Superphosphate simple; Micronutrients.


AGRIOS, G. N. Plant pathology. San Diego: Academic Press, 2005. 952p.

BELAN, L. L. et al. Diagrammatic scale for assessment of bacterial blight in coffee leaves. Journal of Phytopathology, 162(12):801-810, 2014.

BELAN, L. L. et al. Occurrence of Pseudomonas syringae pv. garcae in coffee seeds. Australian Journal Crop Science, 10(7):1015-1021, 2016.

BREAKER, R. R. New insight on the response of bacteria to fluoride. Caries Research, 46:78-81, 2012.

CONSELHO DOS EXPORTADORES DE CAFÉ DO BRASIL - CECAFE. Exportações mundiais, estatísticas mensais de exportação – abril de 2021. 2021. Available on: Access: November 2021

CONLIN, K. C.; MCCARTER, S. M. Effectiveness of selected chemicals in inhibiting Pseudomonas syringae pv. tomato in vitro and in controlling bacterial speck. Plant Disease, 67(6):639-644, 1983.

DORDAS, C. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agronomy Sustainable Development, 28:33-46, 2008.

ELMER, W. H.; DATNOFF, L. E. Mineral nutrition and suppression of plant disease. Encyclopedia of Agriculture and Food Systems, 4:231-244, 2014.

ERSEK, T. et al. Sugar-specific attachment of Pseudomonas syringae pathovar glycinea to isolated single leaf cells of resistant soybean Glycine max cultivars. Journal of Phytopathology, 113(3):260-270, 1985.

FINA, B. L. et al. Comparison of fluoride effects on germination and growth of Zea mays, Glycine max and Sorghum vulgare. Journal Science Food Agricultural, 96(11):3679-3687, 2016.

GARCIA JÚNIOR, D. et al. Incidência e severidade da cercosporiose do cafeeiro em função do suprimento de potássio e cálcio em solução nutritiva. Fitopatologia Brasileira, 28(3):286-291, 2003.

GRAHAM, R. D.; WEBB, M. J. Micronutrients and disease resistance and tolerance in plants. In: MORTVEDT, J. J. et al. (Ed.). Micronutrients in agriculture. Soil Science Society of America, Madison, p.333-339, 1991.

HOAGLAND, D. R.; ARNON, D. I. The water culture method for growing plants without soils. Berkeley, California Agricultural Experimental Station, 1950. 320p.

HUBER, D. H; WILHELM, N. S. The role of manganese in resistance to plant diseases. In: GRAHAM, R. D.; HANNAM, R. J.; UREN, N. C. (Ed.). Manganese in soils and plants. Dordrecht: Kluwer Academic Publishers p.155-173, 1988.

ITO, D. S. et al. Resistance to bacterial blight in arabica coffee cultivars. Crop Breeding and Applied Biotechnology, 8:99-103, 2008.

JHA, S. K.; NAYAK, A. K; SHARMA, Y. K. Fluoride toxicity effects in onion (Allium cepa L.) grown in contaminated soils. Chemosphere, 76(3):353-356, 2009.

KANDUTI, D.; STERBENK, P.; ARTNIK, B. Fluoride: A review of use and effects on health. Mater Sociomed, 28(2):133-137, 2016.

LI, S. et al. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins. PNAS, 110(47):19018-19023, 2013.

LIDON, F. C.; BARREIRO, M. G.; RAMALHO, J. C. Manganese accumulation in rice: Implications for photosynthetic functioning. Journal Plant Physiology, 161(11):1235-1244, 2004.

LIMA, L. M. et al. Relação nitrogênio/potássio com mancha de Phoma e nutrição de mudas de cafeeiro em solução nutritiva. Tropical Plant Pathology, 35(4):223-228, 2010.

MARSCHNER, H. Mineral nutrition of higher plants. London: Academic Press, 2012. 651p.

MARTINEZ, A. M. Fluoride: Its metabolism, toxicity, and Role in Dental Health. JEBCAM, 17(1):28-32, 2012.

MARQUIS, R. et al. Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiology Reviews, 26(5):493-510, 2003.

MATSUMOTO, S. N. et al. Initial growth of coffee plants (Coffea arabica L.) submitted to different phosphate doses in nutritive solution. Coffee Science, 3(1):58-67, 2008.

MIKKONEN, H. et al. Environmental and anthropogenic influences on ambient background concentrations of fluoride in soil. Environmental Science, 242(2):1838-1849, 2018.

MILLALEO, R. et al. Excess manganese differentially inhibits photosystem I versus II in Arabidopsis thaliana. Journal of Experimental Botany, 64(1):343-54, 2013.

NABLE, R. O.; HOUTZ, R. L; CHENIAE, G. M. Early inhibition of photosynthesis during development of Mn toxicity in tobacco. Plant Physiology, 86(4):1136-1142, 1988.

NELSON, D. L. Princípios de Bioquímica de Lehninger. 7. ed. São Paulo: Artmed, 2018. 1312p.

OLIVEIRA, J. R.; ROMEIRO, R. S. Reação de folhas novas e velhas de cafeeiros a infecção por Pseudomonas cichorii e P. syringae pv. garcae. Fitopatologia Brasileira, 15(1):355-356, 1990.

PÉREZ, C. D. P. et al. Nitrogênio e potássio na intensidade da mancha aureolada do cafeeiro em solução nutritiva. Coffee Science, 12(1):60-68, 2017.

PÉREZ, C. D. P. et al. Boron, zinc and manganese suppress rust on coffee plants grown in a nutrient solution. European Journal of Plant Pathology, 156:727-738, 2020.

POZZA, A. A. A. et al. Influência da nutrição mineral na intensidade da mancha-de-olho-pardo em mudas de cafeeiro. Pesquisa Agropecuária Brasileira, 36(1):53-60, 2001.

POZZA, A. A. A.; POZZA, E. A. Nutrientes minerales y control de enfermedades de plantas. In: FAO. (Org.). Memórias de los Talleres de Agroecologia y Roya en Mesoamerica y Republica Dominicana. 1ed. Cidade do Panamá: FAO, v. 1, p. 5-8.2017.

POZZA, E. A.; POZZA, A. A. A.; BOTELHO, D. M. S. O silício no controle de doenças de plantas. Ceres, 62(3):323-331, 2015.

POZZA, E. A.; CARVALHO, V. L.; CHALFOUN, S. M. Sintomas de injúrias causadas por doenças em cafeeiro. In: GUIMARÃES, R. J; MENDES, A. N. G; BALIZA, D. P. (Ed.). Semiologia do cafeeiro: Sintomas de desordens nutricionais, fitossanitários e fisiológicos. Lavras: Editora UFLA, p. 69-101, 2010.

R DEVELOPMENT CORE TEAM. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2020. Available on: August 2021

RAHMANIA, L. K. High extracellular accumulation of p-hydroxybenzonoic acid, p-hydroxycinnamic acid and p-hydroxybenzaldehyde in leaves of Phoenix dactylifera L. affected by the brittle leaf disease. Physiological and Molecular Plant Pathology, 76(2):144-51, 2011.

REN, A.; RAJASHANKAR, K. R.; PATEL, D. J. Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch. Nature, 486(7401):85-89, 2012.

RODRIGUES, L. M. R. et al. Mancha aureolada do cafeeiro causada por Pseudomonas syringae pv. garcae. Campinas: Instituto Agronômico, 2013. 24p.

SAIDI, M. N. et al. Brittle leaf disease induces an oxidative stress and decreases the expression of manganese-related genes in date palm (Phoenix dactylifera L.). Plant Physiology and Biochemistry, 50:1-7, 2012.

SAIDI, M. N. et al. Modulated expression of ion transporters may be responsible for manganese deficiency in brittle leaf disease affect date palm (Phoenix dactylifera L.) trees. Physiological and Molecular Plant Pathology, 84:61-69, 2013.

SANTOS, F. S. et al. Adubação orgânica, nutrição e progresso de cercosporiose e ferrugem do cafeeiro. Pesquisa Agropecuária Brasileira, 43(7):783-791, 2008.

SERA, G. H.; SERA, T.; FAZUOLI, L. C. Dwarf arabica coffee cultivar with resistance to bacterial halo blight. Crop Breeding and Applied Biotechnology, 17(4):403-407, 2017.

SILVA, M. G. et al. Spatio-temporal aspects of brown eye spot and nutrients in irrigated coffee. European Journal of Plant Pathology, 153:931-946, 2019.

SHANNER, G.; FINNEY, R. E. The effect of nitrogen fertilization on the expression of slow-milde wing resistance in Knox wheat. Phytopathology, 67:1051-1056, 1977.

TAIZ, L.; ZEIGER, E. Plant physiology. Porto Alegre: Artmed, 2004. 690p.

TSCHERKO, D.; KANDELER, E. Ecotoxicological effects of fluoride deposits on microbial biomass and enzyme activity in grassland. European Journal of Soil Science, 48(2):329-335, 2015.

TALAMINI, V. et al. Progresso da ferrugem e da cercosporiose-do-cafeeiro (Coffea arabica L.) em diferentes lâminas de irrigação e diferentes parcelamentos de adubação. Ciência e Agrotecnologia, 25(1):55-62, 2003.

THOMPSON, I. A.; HUBER, D. M. Manganese and plant disease. In: DANTNOFF, L. E.; ELMER, W. H.; HUBER, D. M. (Ed.). Mineral nutrition and plant disease. St. Paul, APS Press, p. 139-153, 2007.

WIEGAND, A. et al. Review on fluoride-releasing restorative materials-Fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater 23(3):343-362, 2007.

XU, J. Z. et al. The relationship between lignin peroxidase and manganese peroxidase production capacities and cultivation periods of mushrooms. Microbial Biotechnology, 6(3):241-247, 2012.

ZOCCOLI, D. M.; TAKATSU, A.; UESUGI, C. H. Ocorrência de mancha aureolada em cafeeiros na região do Triângulo Mineiro e Alto Paranaíba. Bragantia, 70(4):843-849, 2011.

YOUNG, J. M. et al. A proposed nomenclature and classification for plant pathogenic bacteria. New Zealand Journal of Agricultural Resear




How to Cite

VELLOSO, J. A. .; POZZA, E. A. .; POZZA, A. A. A.; SILVA, H. R. .; PÉREZ, C. D. P. .; SOUZA, J. O. G. de . Manganese and fluorine suppress bacterial blight on coffee seedlings grown in a nutrient solution. Coffee Science - ISSN 1984-3909, [S. l.], v. 16, p. e161945, 2021. DOI: 10.25186/.v16i.1945. Disponível em: Acesso em: 24 jun. 2022.