Shade influence of the temporary canopy of an agroforestry system on coffee fruit ripening

Authors

  • Paulo Henrique Marquezine Leite Universidade Federal de São Carlos/UFSCar, Centro de Ciências Agrárias/CCA, Programa de Pós-graduação em Agroecologia e Desenvolvimento Rural/PPGADR, Araras, SP, Brasil. https://orcid.org/0000-0002-5524-6249
  • Renata Evangelista de Oliveira Universidade Federal de São Carlos/UFSCar, Centro de Ciências Agrárias/CCA, Departamento de Desenvolvimento Rural/DDR, Araras, SP, Brasil. https://orcid.org/0000-0002-4410-7809
  • Ademir Durrer Bigaton Gênica Inovação Biotecnológica, Piracicaba, SP, Brasil. https://orcid.org/0000-0003-3630-7461
  • Gabriela Vilela Universidade Estadual Paulista/UNESP, Programa de Pós-graduação em Ciências Ambientais/PPGCA, Sorocaba, SP, Brasil. https://orcid.org/0000-0003-3746-4661
  • Anastacia Fontanetti Universidade Federal de São Carlos/UFSCar, Centro de Ciências Agrárias/CCA, Departamento de Desenvolvimento Rural/DDR, Araras, SP, Brasil. https://orcid.org/0000-0003-4863-7839

DOI:

https://doi.org/10.25186/.v16i.1974

Abstract

In Brazil, coffee trees have been included in agroforestry systems, especially owing to climate emergencies and increased demand for specialty coffees. Shading levels inside a multistrata agroforest depend on the design, management and, particularly, on the development and evolution time of the system. Understanding these variations over time, as well as the effects of temporary canopy on coffee production components, can contribute to the creation of more efficient agroforestry designs, especially in agroforestry systems (AFS) that are at the establishment stage. For this reason, this study aimed to assess levels of shading and their influence on the ripening of Yellow Bourbon coffee fruits (Arabica coffee L.). in a four-year-old young agroforestry coffee plantation undergoing stratification and establishment with a temporary canopy formed by Ricinus communis L. Shading was established at four distances: 1 m (D1), 4 m (D2), 7 m (D3) and 10 m (D4), from the sunniest edge (north face) to the interior of the AFS. Different levels of shading were assessed by calculating the difference in photosynthetically active radiation (PAR) under full sun and inside the ASF. Also, total fruit volume, dry fruit percentage and dry biomass of the coffee trees were determined. The greater the edge-to-interior distances in the AFS, the greater the shading level. The study coffee trees responded evenly within each distance; the more shaded ones produced a greater fruit volume and a lower dry fruit percentage. Coffee dry biomass was greater at distance D4. This study can provide further insights into how environmental factors, design and management of agroforestry systems, can affect coffee fruit ripening - a crucial factor for harvesting planning and production of high-quality coffee.

Key words: Multistrata agroforestry; Biomass; Agroforestry management; Photosynthetically active radiation.

References

ANDRADE, H. J. C. et. al. Above-ground biomassmodels for coffee bushes (Coffea arabica L.) in Líbano, Tolima, Colombia. Agroforestry Systems, 92(3):775-784, 2018.

ASSAD, E. D. et al. Climatic changes impact in agroclimatic zonning of coffee in Brazil. Pesquisa Agropecuária Brasileira, 39(11):1057-1064, 2004.

BEDAQUE, P.; BRETONES, P. S. Variação da posição de nascimento do Sol em função da latitude. Revista Brasileira de Ensino de Física, 38(3):e3307, 2016.

BOTE, A. D.; JAN, V. Tree management and environmental conditions affect coffee (Coffea arabica L.) bean quality. NJAS - Wageningen Journal of Life Sciences, 83:39-46, 2017.

CAMPANHA, M. M. et al. Análise comparativa das características da serrapilheira e do solo em cafezais (Coffea arabica L.) cultivados em sistema agroflorestal e em monocultura, na Zona da Mata MG. Revista Árvore, 31(5):805-812, 2007.

CANNAVO, P. et al. Agroforestry associating coffee and Inga densiflora results in complementarity for water uptake and decreases deep drainage in Costa Rica. Agriculture, Ecosystems and Environment, 140(1-2):1-13, 2011.

CHARBONNIER, F. et al. Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system. Plant Cell and Environment, 40(8):1592-1608, 2017.

COLTRI, P. P. et al. Empirical models to predict LAI and aboveground biomass of Coffea arabica under full sun and shaded plantation: A case study of South of Minas Gerais, Brazil. Agroforestry Systems, 89(4):621-636, 2015.

DA SILVA NETO, F. J. et al. Shade trees spatial distribution and its effect on grains and beverage quality of shaded coffee trees. Journal of Food Quality, ID 7909467, 8 pages, 2018.

DAMATTA, F. M. Ecophysiological constraints on the production of shaded and unshaded coffee: A review. Field Crops Research, 86(2-3):99-114, 2004.

DAVIS, H. et al. The economic potential of fruit trees as shade in blue mountain coffee agroecosystems of the Yallahs River watershed, Jamaica W.I. Agroforestry Systems, 93:581-589, 2019.

DIAS, J. M. et al. Consumo hídrico e coeficiente de cultivo da mamoneira, cultivar BRS energia. Irriga, 20(3):429-444, 2015.

EHRENBERGEROVÁ, L. et al. Impact of tree shading on the microclimate of a coffee plantation: A case study from the Peruvian Amazon. Bois et Forets Des Tropiques, 334:13-22, 2017.

ERNESTO MÉNDEZ, V.; GLIESSMAN, S. R.; GILBERT, G. S. Tree biodiversity in farmer cooperatives of a shade coffee landscape in western El Salvador. Agriculture, Ecosystems and Environment, 119(1-2):145-159, 2007.

FAZOULI, L. C. et al. Evaluation of the cultivars mundo novo, bourbon amarelo and bourbon vermelho of Coffea arabica L., in Campinas, state of São Paulo, Brazil. Bragantia, 64(4):533-546, 2005.

GOMES, L. C. et al. Agroforestry systems can mitigate the impacts of climate change on coffee production: A spatially explicit assessment in Brazil. Agriculture, Ecosystems and Environment, 294:106858, 2020.

HAMER, O.; HARPER, D. A. T.; RYAN, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1):1-9, 2001.

KÖPPEN, W. Climatologia: Con un estudio de los climas de la tierra. Fondo de Cultura econômica. 1948. 469p.

JARAMILLO-BOTERO, C. et al. Características do café (Coffea arabica L.) sombreado no norte da américa latina e no Brasil: Análise comparativa. Coffee Science, 1(2):94-102, 2006.

JARAMILLO-BOTERO, C. et al. Produção e crescimento vegetativo de cafeeiros sob fertilização e sombreamento. Scientia Agricola, 67(6):639-645, 2010.

MEYLAN, L. et al. Evaluating the effect of shade trees on provision of ecosystem services in intensively managed coffee plantations. Agriculture, Ecosystems and Environment, 245:32-42, 2017.

MORAES, F. T.; JIMÉNEZ-RUEDA, J. R. Fisiografia da região do planalto de Poços de Caldas, MG/SP. Revista Brasileira de Geociências, 38(1):196-208, 2008.

MUSCHLER, R. G. Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agroforestry Systems, 85:131-139, 2001.

OLIVEIRA, R. E. de.; CARVALHAES, M. A. Agroforestry as a tool for restoration in atlantic forest: Can we find multi-purpose species?. Oecologia Australis, 20(4):425-435, 2016.

PERFECTO, I. et al. Biodiversity, yield, and shade coffee certification. Ecological Economics, 54(4):435-446, 2005.

PETEK, M. R.; SERA, T.; FONSECA, I. C. B. de. Exigências climáticas para o desenvolvimento e maturação dos frutos de cultivares de Coffea arabica. Bragantia, 68(1):169-181, 2009.

PEZZOPANE, J. R. M. et al. Escala para avaliação de estádios fenológicos do cafeeiros arábica. Bragantia, 62(3):499-505, 2003.

PEZZOPANE, J. R. M. et al. Microclimate in coffee plantation grown under grevillea trees shading. Acta Scientiarum - Agronomy, 33(2):201-206, 2011a.

PEZZOPANE, J. R. M. et al. Alterações microclimáticas em cultivo de café conilon arborizado com coqueiro-anão-verde. Revista Ciência Agronômica, 42(4):865-871, 2011b.

PEZZOPANE, J. R. M. et al. Condições microclimáticas em cultivo de café conilon a pleno sol e arborizado com nogueira macadamia. Ciencia Rural, 40(6):1257-1263, 2010.

RICCI, M. S. F. dos.; COSTA, J. R.; DE OLIVEIRA, N. G. Utilização de componentes principais para analisar o comportamento do cafeeiro a pleno sol e sombreado. Coffee Science, 6(1):44-54, 2010.

SCHNABEL, F. et. al. Shade trees: A determinant to the relative success of organic versus conventional coffee production. Agroforestry Systems, 92:1535-1549, 2018.

SILES, P.; HARMAND, J. M.; VAAST, P. Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agroforestry Systems, 78:269-286, 2010.

STAVER, C. et al. Designing pest-suppressive multistrata perennial crop systems: Shade-grown coffee in Central America. Agroforestry Systems, 53(2):151-170, 2001.

TAIZ, L. et. al. Fisiologia e desenvolvimento vegetal. 6ed. Porto Alegre, Rio grande do Sul: Artmed. 2017. 855p.

TEIXEIRA, S. M.; CAIXETA, G. Z. T. Economicidade e certificação da cafeicultura familiar na Zona Da Mata de Minas Gerais. Pesquisa Agropecuária Tropical, 39(4):317-329, 2009.

TULLY, K. L.; LAWRENCE, D.; SCANLON, T. M. More trees less loss: Nitrogen leaching losses decrease with increasing biomass in coffee agroforests. Agriculture, Ecosystems and Environment, 161:137-144, 2012.

VAAST, P. et al. Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. Journal of the Science of Food and Agriculture, 86(2):197-204, 2006.

VALENCIA, F. F. F.; MESTRE-MESTRE, A. Respuesta del café cultivado en un sistema agroforestal a la aplicación de fertilizantes. Cenicafe, 55(2):161-174, 2004.

VALENTINI, L. S. de P. et al. Temperatura do ar em sistemas de prordução de café arábica em momonocultiltivo e arboriorizados com seringueira coqueiro-anão na região de mococa, SP. Bragantia, 69(4):1005-1010, 2010.

VERDIN, A. C. F. et al. Nova tecnologia de poda para o café arábica: Poda programada de ciclo para o café arabica. Coffee Science, 11(4):475-483, 2016.

VIEIRA, T. A. et al. Sistemas agroflorestais em áreas de agricultores familiares em Igarapé-Açu, Pará: Caracterização florística, implantação e manejo. Acta Amazonica, 37(4):549-557, 2007.

Downloads

Published

2022-05-12

How to Cite

LEITE , P. H. M.; OLIVEIRA, R. E. de; BIGATON, A. D. .; VILELA , G. .; FONTANETTI, A. Shade influence of the temporary canopy of an agroforestry system on coffee fruit ripening. Coffee Science - ISSN 1984-3909, [S. l.], v. 16, p. e161974, 2022. DOI: 10.25186/.v16i.1974. Disponível em: http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/1974. Acesso em: 24 jun. 2022.