Aluminum toxicity assessment in Coffea arabica cv. Catiguá MG2 under hydroponic conditions

Authors

  • Mayara Holanda de Carvalho Empresa Brasileira de Pesquisa Agropecuária/Embrapa, Embrapa Agroenergia, Brasília, DF, Brasil. https://orcid.org/0000-0002-6231-8706
  • Wesley Pires Flausino Máximo Universidade Federal de Lavras/UFLA, Departamento de Química/DQI, Instituto de Ciências Naturais/ICN, Lavras, MG, Brasil. https://orcid.org/0000-0002-4370-1013
  • Kaio Olímpio das Graças Dias Universidade Federal de Viçosa/UFV, Departamento de Biologia Geral/DBG, Viçosa, MG, Brasil. https://orcid.org/0000-0002-9171-1021
  • Andressa Spuri Azarias Louis Dreyfus Company/LDC, Varginha, MG, Brasil. https://orcid.org/0000-0002-1809-0089
  • Jéssica de Castro e Andrade AgroCP, Indústria e Comércio de Fertilizantes LTDA, Três Pontas, MG, Brasil. https://orcid.org/0000-0001-8506-7391
  • Evânia Galvão Mendonça Universidade Federal de São João del-Rei/UFSJ, Departamento de Engenharia Florestal/Deflo, Sete Lagoas, MG, Brasil. https://orcid.org/0000-0002-4473-6285
  • Luciano Vilela Paiva Universidade Federal de Lavras/UFLA, Departamento de Química/DQI, Instituto de Ciências Naturais/ICN, Lavras, MG, Brasil. https://orcid.org/0000-0002-2577-2168

DOI:

https://doi.org/10.25186/.v16i.1983

Abstract

Aluminum is an element commonly found in acid soils, notably known by their pH values ranging around 5. At soil pH values at or below pH 5, aluminum may drastically interfere with phosphorus uptake by plants, inhibit root growth, and induce cell death. This study aimed to assess the tolerance of Coffea arabica cv. Catiguá MG2 seedlings in a solution containing Al under hydroponic conditions using a simple, relatively fast protocol. Seedlings at 6 months of age, established in vitro, were cultivated in Hoagland solution (¼ strength and pH 4.0) supplemented with different concentrations of Al (0; 0.888; 1.666; and 2.499 mM) provided from the source AlK(SO4)2.12H2O for 30 days. The higher Al3+ concentrations caused more evident symptoms of toxicity, unlike the 0.888 mM that caused little damage to the roots. The control seedlings did not exhibit any symptoms of nutritional deficiencies. Although the
protocol has been used only for a specific coffee cultivar, it is expected to be useful in the assessment of Al-caused toxicity in other coffee materials when exposing seedlings to Al in the hydroponic system with a dilution of Hoagland solution, and could be useful for the quick identification of coffee genotypes with certain Al tolerance.


Key words: Acid soils; Aluminum tolerance; Root elongation inhibition; Cell death; Hoagland solution.

References

BALIGAR, V. C. et al. Soil aluminium effects on uptake, influx, and transport of nutrients in sorghum genotypes. Plant and Soil, 150:271-277, 1993.

BENNET, R. J.; BREEN, C. M.; FEY, M. V. Aluminium toxicity and induced nutrient disorders involving the uptake and transport of P, K, Ca and Mg in Zea mays L. South African Journal of Plant Soil, 3(1):11-17, 1986.

BOJÓRQUEZ-QUINTAL, E. et al. Aluminum, a friend or foe of higher plants in acid soils. Frontiers in Plant Science, 8:1767, 2017.

BRACCINI, M. C. L. et al. Tolerância de genótipos de cafeeiro ao alumínio em solução nutritiva. II. Teores de P, Ca e Al e eficiência ao P e Ca. Revista Brasileira de Ciência do Solo, 22(3):443-450, 1998.

CHEN, Z. C. et al. Functional dissection and transport mechanism of magnesium in plants. Seminars in Cell & Developmental Biology, 74:142-152, 2018.

COMPANHIA NACIONAL DE ABASTECIMENTO - CONAB. Acompanhamento da safra brasileira de café. Brasília, 2018. 84p. Available in: https://www.conab.gov.br/info-agro/safras/cafe/boletim-da-safra-de-cafe?start=10. Access in: April 17, 2019.

CUNHA, G. O. M. et al. Formas de alumínio em solos ácidos brasileiros com teores excepcionalmente altos de Al3+ extraível com KCl. Revista Brasileira de Ciência do Solo, 39(5):1362-1377, 2015.

ETIENNE, H. Somatic embryogenesis protocol: Coffee (Coffea arabica L. and C. canephora P.). In: JAIN, S. M.; GUPTA, P. K. (eds) Protocols of somatic embryogenesis-woody plants. Springer, Wageningen , p. 167-179, 2005.

FERREIRA, D. F. Sisvar: A guide for its bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38(2):109-112, 2014.

FILHO, O. G.; RAMALHO, M. A. P.; ANDRADE, V. T. Alcides Carvalho and the selection of Catuaí cultivar: interpreting the past and drawing lessons for the future. Crop Breeding and Applied Biotechnology, 18(4):460-466, 2018.

GIANNAKOULA, A. et al. Aluminum stress induces up-regulation of an efficient antioxidant system in the al-tolerant maize line but not in the al-sensitive line. Environmental and Experimental Botany, 67(3):487-494, 2010.

HOAGLAND, D. R.; ARNON, D. I. The water-culture method for growing plants without soil. California Agricultural Experiment Station, 347:23-32, 1950.

KOBAYASHI, N. I. et al. Magnesium deficiency damages the youngest mature leaf in rice through tissue-specific iron toxicity. Plant Soil, 428:137-152, 2018.

KOPITTKE, P. M. et al. Kinetics and nature of aluminium rhizotoxic effects: A review. Journal of Experimental Botany, 67:4451-4467, 2016.

LIANG, C. et al. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiology, 161(3):1347-1361, 2013.

LIU, J.; PIÑEROS, M. A.; KOCHIAN, L.V. The role of aluminum sensing and signaling in plant aluminum resistance. Journal of Integrative Plant Biology, 56(3):221-230, 2014.

LONDOÑO, M. E. A.; VALENCIA, A. G. Toxicidad de aluminio en plantas de café. Cenicafé, 34:61-97, 1983.

MA, B. et al. Aluminum-induced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance. Plant Cell Reports, 31:687-696, 2012.

MACEDO, C. M. P. et al. Tolerance of arabica coffee cultivars for aluminum in nutritive solution. Brazilian Archives of Biology and Technology, 54(5):885-891, 2011.

MUHAMMAD, N.; ZVOBGO, G.; GUO-PING Z. A review: The beneficial effects and possible mechanisms of aluminum on plant growth in acidic soil. Journal of Integrative Agriculture, 18(7):1518-1528, 2019.

MURASHIGE, T.; SKOOG, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3):473-497, 1962.

NGUYEN, N. T.; MCINTURF, S. A.; MENDOZA-CÓZATL, D. G. Hydroponics: A versatile system to study nutrient allocation and plant responses to nutrient availability and exposure to toxic elements. Journal of Visualized Experiments, 113:e54317, 2016.

PAVAN, M. A.; BINGHAM, F. T. Toxidez de alumínio em cafeeiros cultivados em solução nutritiva. Pesquisa Agropecuária Brasileira, 17:1293-1302, 1982.

PEIXOTO, R. S. et al. A decade of land use contributes to changes in the chemistry, biochemistry and bacterial community of soils in the Cerrado. Antonie van Leeuwenhoek, 98:403-413, 2010.

R CORE TEAM. R: A language and environment for statistical computing, version 4.1.2, 2021. Available in: https://www.r-project.org/. Access in: February 18, 2022.

RAO, I. M. et al. Root adaptations to soils with low fertility and aluminum toxicity. Annals of Botany, 118(4):593-605, 2016.

SADE, H. et al. Toxicity and tolerance of aluminum in plants: Tailoring plants to suit to acid soils. Biometals, 29:187-210, 2016.

SHRI, P.U.; PILLAY, V. Excess of soil zinc interferes with uptake of other micro and macro nutrients in Sorghum bicolor (L.) plants. Indian Journal of Plant Physiology, 22(3):304-308, 2017.

SIGNORELL, A. et al. DescTools: Tools for descriptive statistics. R package version 0.9.44, 2021. Available in: https://cran.r-project.org/web/packages/DescTools/DescTools.pdf. Access in: February 18, 2022.

SUN, C. et al. Nitric oxide alleviates aluminum-induced oxidative damage through regulating the ascorbate-glutathione cycle in roots of wheat. Journal of Integrative Plant Biology, 57(6):550-561, 2014.

VENDRAME, P. R. S. et al. Fertility and acidity status of latossolos (oxisols) under pasture in the Brazil Cerrado. Anais da Academia Brasileira de Ciências, 82(4):1085-1094, 2010.

WAGATSUMA, T. The membrane lipid bilayer as a regulated barrier to cope with detrimental ionic conditions: Making new tolerant plant lines with altered membrane lipid bilayer. Soil Science and Plant Nutrition, 63(5):507-516, 2017.

YAMAMOTO, Y. Aluminum toxicity in plant cells: Mechanisms of cell death and inhibition of cell elongation. Soil Science and Plant Nutrition, 65(1):41-55, 2019.

Downloads

Published

2022-05-20

How to Cite

CARVALHO, M. H. de .; MÁXIMO, W. P. F.; DIAS, K. O. das G.; AZARIAS, A. S.; ANDRADE, J. de C. e; MENDONÇA, E. G.; PAIVA, L. V. Aluminum toxicity assessment in Coffea arabica cv. Catiguá MG2 under hydroponic conditions. Coffee Science - ISSN 1984-3909, [S. l.], v. 16, p. e161983, 2022. DOI: 10.25186/.v16i.1983. Disponível em: http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/1983. Acesso em: 30 sep. 2022.