Factor analysis for plant and production variables in Coffea canephora in the Western Amazon

Authors

  • Gabi Nunes Silva Fundação Universidade Federal de Rondônia/UNIR, Campus Ji-Paraná, Departamento Acadêmico de Matemática e Estatística, Ji-Paraná, RO, Brasil. https://orcid.org/0000-0003-4161-9267
  • Laís Mayara Azevedo Barroso Fundação Universidade Federal de Rondônia/UNIR, Campus Ji-Paraná, Departamento Acadêmico de Matemática e Estatística, Ji-Paraná, RO, Brasil. https://orcid.org/0000-0001-6400-3313
  • Cosme Damião Cruz Universidade Federal de Viçosa/UFV, Departamento de Biologia Geral, Viçosa, MG, Brasil. https://orcid.org/0000-0003-3513-3391
  • Rodrigo Barros Rocha Empresa Brasileira de Pesquisa Agropecuária/Embrapa, Centro de Pesquisa Agroflorestal de Rondônia, PortoVelho, RO, Brasil. https://orcid.org/0000-0001-5275-5315
  • Fábio Medeiros Ferreira Instituto de Ciências Exatas e Tecnologia da Universidade Federal do Amazonas/UFAM, Campus Itacoatiara, Itacoatiara, AM, Brasil. https://orcid.org/0000-0003-3381-9306

DOI:

https://doi.org/10.25186/.v17i.1985

Abstract

The evaluation of morphological characters related to the hulled coffee yield subsidizes the selection of Coffea canephora plants that combine a set of favorable traits. However, the greater the number of traits considered, the more difficult the selection process becomes. In this context, multivariate analyzes can be useful to overcome this problem. The aim of this study was to identify, in a set of agronomic traits of Coffea canephora, the determining factors of biological phenomena and use these factors to recognize patterns of diversity and similarity from biological complexes of interest to the breeder. To this, eleven morphological descriptors were evaluated of 130 clones of the botanical varieties Conilon and Robusta and intervarietal hybrids over two crop years in the experimental field of Embrapa, in the municipality of Ouro Preto do Oeste, state of Rondônia (RO). To group the traits, the multivariate technique of Factor Analysis was used. The effect of genotype x year interaction was significant for the eleven traits analyzed. Based on the scree plot, three factors were established. Factors were interpreted as architecture, vigor and grains with a satisfactory percentage of explained variability. The interpretation of the factors highlighted the importance of the Conilon variety to improve the architecture of the Robusta botanical variety. These results show that it is possible to use factor scores to identify varieties and traits that favor higher production of hulled coffee.

Key words: Coffee; Conilon; Robusta; Intervarietal hybrids; Multivariate analyzes.

References

BARBOSA, I. D. P. et al. Recommendation of Coffea arabica genotypes by factor analysis. Euphytica, 215(178), 2019.

CATTELL, R. B. The scree test for the number of factors. Multivariate behavioral research, 1(2):245-276, 1966.

CHARRIER, A.; BERTHAUD J. Botanical classification of coffee. In: CLIFFORF, M. N. E.; WILLSON, K. C. Coffee: Botany, biochemistry, and production of beans and beverage. New York: Croom Helm, p.13-47,1985.

CRUZ, C. D. et al. Modelos biométricos aplicados ao melhoramento genético. Viçosa, Minas Gerais: Editora UFV, 2014. 560p.

CRUZ, C. D. Genes software-extended and integrated with the R, Matlab and Selegen. Acta Scientiarum Agronomy, 38(4):547-552. 2016.

FERRÃO, M. A. G. et al. Characterization and genetic diversity of Coffea canephora accessions in a germplasm bank in Espírito Santo, Brazil. Crop Breeding and Applied Biotechnology, 21(2):e36132123, 2021.

FERRÃO, R. G. et al. (Ed.). Café Conilon. Vitória: Incaper, 2007. 702p.

FERRÃO, R. G. et al. Cultivares de cafés Conilon e Robusta. Informe Agropecuário. Cafés Conilon e Robusta: potencialidades e desafios, 41(309):17-25, 2020.

FERREIRA, F. M. et al. Formação de supercaracteres para seleção de famílias de maracujazeiro amarelo. Acta Scientiarum Agronomy. Maringá, 32(2):247-254, 2010.

FIGUEIREDO FILHO, D. B.; SILVA JÚNIOR, J. A. Visão além do alcance: uma introdução à análise fatorial. Opinião Pública, 16(1):160-185, 2010.

IVOGLO, M. G. et al. Divergência genética entre progênies de café robusta. Bragantia, 67(4):823-831, 2008.

MARCOLAN, A. L.; ESPINDULA, M.; Café na Amazônia. 1 ed. Brasília, Distrito Federal: Embrapa, 2015. 474p.

MARCOLAN, A. L. et al. Cultivo dos cafeeiros Conilon e Robusta para Rondônia. 3. ed. rev. atual. Porto Velho: Embrapa Rondônia: Emater-RO, 2009. 67p. (Embrapa Rondônia. Sistema de produção, 33).

MERENDA, P. F. A Guide to the Proper Use of Factor Analysis in the Conduct and Reporting of Research: Pitfalls to Avoid. Measurement and Evaluation in Counseling and Development 30. 156-164, 1997.

MINGOTI, S. A. Análise de dados através de métodos de estatística multivariada: uma abordagem aplicada. Belo Horizonte, Minas Gerais: Editora UFMG, 2005. 297p.

MORAES, M. S. et al. Environmental stratification and performance of Coffea canephoraclones grown in the Western Amazon. Coffee Science, 16:e161911, 2021.

OLIVEIRA, L. N. L. et al. Selection of Coffea canephora parents from the botanical varieties Conilon and Robusta for the production of intervarietal hybrids. Ciência Rural, 48(4):1-7, 2018.

PETERSON, R. A. A Meta-Analysis of Variance Accounted for and Factor Loadings in Exploratory Factor Analysis. Marketing Letters, 11:261-275, 2000.

R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. 2021.

REIS, G. G. et al. Tropical maize selection indexes genotypes for efficiency in use of nutrients: phosphorus. Revista Ceres, 64:266-273, 2017.

RESENDE, M. D. V. Genética Quantitativa e de Populações. 1ed. Visconde do Rio Branco, Minas Gerais: Suprema, 2015. v.1, 422p.

RIBEIRO, B. B. et al. Avaliação química e sensorial de blends de Coffea canephora Pierre e Coffea arabica L. Coffee Science, 9(2):178-186, 2014.

ROCHA, R. B. et al. Melhoramento de Coffea canephora – considerações e metodologias. In: MARCOLAN, A. L.; ESPINDULA, M. C. (Ed.). Café na Amazônia. Brasília: Embrapa, p.100-126, 2015.

ROCHA, R. B. et al. Coffea canephora breeding: estimated and achieved gains from selection in the Western Amazon, Brazil. Ciência Rural, 51(5):e20200713, 2021.

SOUZA, F. de F. et al. de Aspectos gerais da biologia e da diversidade genética de Coffea canephora. In: MARCOLAN, A. L.; ESPINDULA, M. C. (Ed.). Café na Amazônia. Brasília: Embrapa, p.84-98, 2015.

SOUZA, M. S. et al. Classification of Coffea canephora clones in botanical varieties by discriminant analysis of the k-nearest neighbors. Revista Ceres, 68(5):371-374, 2021.

SPINELLI, V. M. et al. Contribution of agronomic traits to the yield of Coffea canephora Pierre ex A. Froehner Hulled coffee. Coffee Science, 13(3):333-340, 2018.

TEIXEIRA A. L. et al. Performance of intraspecific hybrids (Kouillou x Robusta) of Coffea canephora Pierre. African Journal of Agricultural Research, 12:2675-2680, 2017.

TEIXEIRA, F. R. F. et al. Factor analysis applied to genome prediction for high-dimensional phenotypes in pigs. Genetics and Molecular Research, 15:1-10, 2016.

BARROS, S. Coffee annual report. United States Departament of Agriculture: Foreign Agricultural service. São Paulo: ATO, 2021.

ZHU, M.; GHODSI, A. Automatic dimensionality selection from the scree plot via the use of profile likelihood. Computational Statistics & Data Analysis, 51:918-930, 2006.

Downloads

Published

2022-07-12

How to Cite

SILVA, G. N.; BARROSO, L. M. A.; CRUZ, C. D. .; ROCHA, R. B.; FERREIRA, F. M. Factor analysis for plant and production variables in Coffea canephora in the Western Amazon. Coffee Science - ISSN 1984-3909, [S. l.], v. 17, p. e171985, 2022. DOI: 10.25186/.v17i.1985. Disponível em: http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/1985. Acesso em: 30 sep. 2022.