Genetic variability of conilon coffee population from cultivar ‘ES8152’ based on morphoagronomic variables

Authors

  • João Felipe Brites Senra Instituto Capixaba de Pesquisa Assistência Técnica e Extensão Rural Centro de Pesquisa Desenvolvimento e Inovação Sul, Cachoeiro de Itapemirim, ES, Brasil. https://orcid.org/0000-0001-7915-2821
  • Josimar Aleixo da Silva Instituto Capixaba de Pesquisa Assistência Técnica e Extensão Rural Centro de Pesquisa Desenvolvimento e Inovação Sul, Cachoeiro de Itapemirim, ES, Brasil. https://orcid.org/0000-0001-6921-6043
  • Maria Amélia Gava Ferrão Empresa Brasileira de Pesquisa Agropecuária/Embrapa Café, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural/Incaper, Vitória, ES, Brasil. https://orcid.org/0000-0002-8863-6956
  • Marlon Dutra Degli Esposti Instituto Capixaba de Pesquisa Assistência Técnica e Extensão Rural, Cachoeiro de Itapemirim, ES, Brasil. https://orcid.org/0000-0003-0033-6105
  • Idalina Sturião Milheiros Instituto Capixaba de Pesquisa Assistência Técnica e Extensão Rural, Cachoeiro de Itapemirim, ES, Brasil. https://orcid.org/0000-0001-9449-2138
  • Kamila Machado Fassarella Instituto Capixaba de Pesquisa Assistência Técnica e Extensão Rural, Alegre, ES, Brasil. https://orcid.org/0000-0002-8695-5048

DOI:

https://doi.org/10.25186/.v17i.1986

Abstract

This study aimed to analyze the genetic variability of Coffea canephora population with 190 genotypes from cultivar ‘ES8152’, based on morphoagronomic characteristics and vegetation index, to identify the most important characteristics for genetic divergence and compare them with commercial clones. The experiment was installed, in 2019, at the Bananal do Norte Experimental Farm/INCAPER, Cachoeiro de Itapemirim, ES, Brazil. The experiment was carried out in Federer’s augmented block design with three blocks, four common treatments (commercial clones A1, LB1, V8 and V12) and 190 regular treatments, genotypes from the seed production field of the conilon coffee cultivar ‘ES8152’. At 24 months of age 14 morphoagronomic characteristics and vegetation index were evaluated. Descriptive analysis of the data, the estimation of the Standardized Euclidean Distance (ED) followed by the grouping by the methods of Tocher, UPGMA and principal coordinates, in addition to the relative importance of the characters estimated by the Singh methodology were performed. The most distant genotypes were 62 and 83 (ED=2.620) and the closest were 42 and 160 (ED=0.208). Genotype 83 stood out as the most distant among the others. The optimization and hierarchical groupings allowed the identification of genotypes 15, 81, 107 and 184 as similar to commercial clones. The discard analysis of variables recommended the elimination of the vegetation index and average internode length of the next diversity analysis. Principal coordinate analysis found phenotypic similarity of the genotypes 30, 81, 115, 141 and 163 with the clone V12, of the genotype 119 with the clone A1 and genotype 17 with clone LB1. The study, of morphoagronomic characters, allowed to detection the genetic diversity existing in the materials evaluated, indicating those with phenotypic similarity with the commercial clones, being possible the early identification of promising
genotypes, agronomically superior, to start a breeding program for clonal selection, recurrent selection and controlled crosses to maximize heterosis.

Key words: Coffea canephora; pre-breeding; genetic diversity; clusters.

References

BORÉM, A.; MIRANDA, G. V. Melhoramento de plantas. 6ed. Viçosa: Editora UFV, 2013. 523p.

COMPANHIA NACIONAL DE ABASTECIMENTO - CONAB. Acompanhamento da safra brasileira de café 2021. Brasília, 2021. Available in: . Access in: September, 23, 2021.

CRUZ, C. D. Genes Software - extended and integrated with the R, Matlab and Selegen. Acta Scientiarum Agronomy, 38(4):547-552, 2016.

CRUZ, C. D.; REGAZZI, A. J.; CARNEIRO, P. C. S. Modelos biométricos aplicados ao melhoramento genético. 4ed. Viçosa: Editora UFV, 2012. 514p.

DUBBERSTEIN, D. et al. Biometric traits as a tool for the identification and breeding of Coffea canephora genotypes. Genetics and Molecular Research, 19(2):1-17, 2020.

FEDERER, W. T. Augmented (or hoonuiaku) designs. Hawaiian Planters’ Record, 55(2):191-208, 1956.

FERRÃO, M. A. G. et al. Genetic divergence in conilon coffee revealed by RAPD markers. Crop Breeding and Applied Biotechnology, 9(1):67-74, 2009.

FERRÃO, M. A. G. et al. Variabilidade genética de progênies híbridas de Coffea Canephora. In: Congresso brasileiro melhoramento de plantas. Foz do Iguaçu: SBMP, 2017. 9p.

FERRÃO, R. G. et al. Conilon coffee. 3ed, Vitoria: INCAPER, 2019. 974p.

FERRÃO, L. F. V. et al. Accurate genomic prediction of Coffea canephora in multiple environments using whole-genome statistical models. Heredity, 122:261-275, 2019b.

FERRÃO, M. A. G. et al. Biotechnology applied to Coffea canephora. In: FERRÃO, R. G. et al. Conilon coffee. 3ed. Vitoria: INCAPER, p. 223-253, 2019.

FERRÃO, R. G. et al. ES 8152 – Conquista: Cultivar de café conilon propagada por sementes para os produtores de base familiar e sua utilização no melhoramento genético para o estado do Espírito Santo. Multi-Science Research, 2(2):1-18, 2019.

FERRÃO, M. A. G. et al. Characterization and genetic diversity of Coffea canephora accessions in a germplasm bank in Espírito Santo, Brazil. Crop Breeding and Applied Biotechnology, 21(2):e36132123, 2021.

FONSECA, A. F. A. et al. Divergência genética em café conilon (Coffea canephora Pierre). Pesquisa Agropecuária Brasileira, 41(4):599-605, 2006.

GILES, J. A. D. et al. Genetic diversity of promising ‘conilon’ coffee clones based on morpho-agronomic variables. Annals of the Brazilian Academy of Sciences, 90:2437-2446, 2018.

NOGUEIRA, M. R. et al. A Novel vegetation index for coffee ripeness monitoring using aerial imagery. Remote Sensing, 13(2):263, 2021.

NOGUEIRA, S. M. C.; MOREIRA, M. A.; VOLPATO, M. M. L. Relationship between coffee crop productivity and vegetation indexes derived from Oli / Landsat-8 sensor data with and without topographic correction. Engenharia Agrícola, 38(3):387-394, 2018.

MORAES, M.S. et al. Characterization of gametophytic selfincompatibility of superior clones of Coffea canephora. Genetics and Molecular Research, 17(1):1-11, 2018.

MOTA, F. M. et al. Relação entre variáveis meteorológicas e índices de vegetação (IV’s) em lavouras cafeeiras. Brazilian Journal of Animal and Environmental Research, 3 (4):4287-4209, 2020.

PONTES, D. S. et al. Trait selection using procrustes analysis for the study of genetic diversity in Conilon coffee. Acta Scientiarum Agronomy, 42:e43195, 2020.

PREZOTTI, L. C. et al. Manual de recomendação de calagem e adubação para o Estado do Espírito Santo: 5ª aproximação. Vitória: INCAPER, 2007. 305p.

R CORE TEAM. R language and enviromental for statitiscal computing. R foundation for Statistical, Vienna, Austria. 2019. Available in: . Access in: September, 20, 2021.

RAO, R. C. Advanced statistical methods in biometric research. New York: J. Wiley, 1952. 330p.

SENRA, J. F. B. et al. Genetic variability of access of the active germplasm bank of Coffea canephora of Incaper in southern Espírito Santo. Journal of Genetic Resources, 6(2):172-184, 2020.

SILVA, J. A. et al. Índice de vegetação por diferença normalizada em genótipos de cafeeiros cultivados em ambientes contrastantes de altitude. In: XXV Encontro Latino Americano de Iniciação Científica. Universidade do Vale do Paraíba, São José dos Campos, 2021. 6p.

SINGH, D. The relative importance of characters affecting genetic divergence. Indian Journal of Genetics and Plant Breeding, 41(2):237-245, 1981.

SOUZA, L. C. et al. Molecular characterization of parents and hybrid progenies of conilon coffee. Annals of the Brazilian Academy of Sciences, 93:e20201649, 2021.

TRAN, H. T. M. et al. Variation in bean morphology and biochemical composition measured in different genetic groups of arabica coffee (Coffea arabica L.). Tree Genetics Genomes. 13:54, 2017.

Downloads

Published

2022-08-24

How to Cite

SENRA, J. F. B. .; SILVA, J. A. da .; FERRÃO, M. A. G.; ESPOSTI, M. D. D. .; MILHEIROS, I. S. .; FASSARELLA, K. M. . Genetic variability of conilon coffee population from cultivar ‘ES8152’ based on morphoagronomic variables. Coffee Science - ISSN 1984-3909, [S. l.], v. 17, p. e171986, 2022. DOI: 10.25186/.v17i.1986. Disponível em: http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/1986. Acesso em: 9 dec. 2022.