Identifying Coffea genotypes tolerant to water deficit

Authors

  • Diana María Molina Centro Nacional de Investigaciones de Café/Cenicafé, Plant Breeding Department, Manizales, Caldas, Colombia. https://orcid.org/0000-0001-6941-5405
  • Ruben Medina Rivera Centro Nacional de Investigaciones de Café (Cenicafé), Biometrics Department. Manizales, Caldas, Colombia. https://orcid.org/0000-0002-9753-9613

DOI:

https://doi.org/10.25186/.v17i.1994

Abstract

Approximately 26% of the coffee grown in Colombia is located in areas presenting water deficit, with some of these areas also presenting high solar brightness. This combination reduces coffee production, thus affecting the income of 31% of the country’s coffee-growing families. To identify accessions of the Colombian Coffee Collection (CCC) that are tolerant to water deficit, 65 genotypes were evaluated in screenhouse conditions using two soil moisture treatments: (1) soil at field capacity (60% moisture) and (2) water deficit conditions, with soil at 50% field capacity (30% moisture). After five months, total biomass was determined as the sum of the biomass of leaves, stems, and roots, and values analyzed according to the Student's t test for independent samples at a level of significance of 5%. Reducing irrigation under water deficit conditions usually delays accession growth, which is reflected in decreased biomass. However, the total biomass of nine Ethiopian introductions of Coffea arabica (CCC238, CCC254, CCC284, CCC372, CCC474, CCC536, CCC537, CCC555, CCC1147), six diploid accessions (CCC1030, EA.20, EA.209, EA.227, EA.229, EA.287), and three interspecific hybrids of Caturra x Coffea canephora (25, 640, 702) in water deficit conditions did not differ statistically from the total biomass obtained in treatments with irrigation at field capacity. Because these introductions present adaptation mechanisms to water deficit, they retain their leaves without reducing their leaf area or total biomass and should accordingly be considered as candidates for evaluation in dry regions to determine their tolerance to water deficit based on effects on production or biomass.

Key words: Coffea arabica; Coffea canephora; interspecific hybrids; total dry biomass; water stress.

References

ANTHONY, F. et al. Genetic diversity of wild coffee (Coffea arabica L.) using molecular markers. Euphytica, 118:53-65, 2001.

ANTHONY, F. M. et al. The origin of cultivated Coffea arabica L. varieties revealed by AFLP and SSR markers. Theoretical and Applied Genetics, 104:894-900, 2002.

ARCILA, J.; JARAMILLO, A. Relación entre la humedad del suelo, la floración y el desarrollo del fruto del cafeto. Avances Técnicos, 311:1-8, 2003.

BUNN, C. et al. Multiclass classification of agro-ecological zones for Arabica coffee: an improved understanding of the impacts of climate change. PLoS ONE, 10:e0140490, 2015.

CARVALHO, F. G. et al. Drought tolerance in seedlings of coffee genotypes carrying genes of different species. Coffee Science, 12(2):156-8163, 2017.

CHESEREK, J. J.; GICHIMU, B. M. Drought and heat tolerance in coffee: a review. International Research Journal of Agricultural Science and Soil Science, 2:498-501, 2012.

CORTINA, H.; CASTRO, B. L. Evaluación de híbridos interespecíficos de Coffea arabica x Coffea canephora con resistencia a Hemileia vastatrix y Ceratocystis colombiana. Revista Cenicafé, 66(2):17-29, 2015.

DAMATTA, F. M. et al. Drought tolerance of two field-grown clones of Coffea canephora. Plant Science, 164:111-117, 2003.

DAMATTA, F. M.; RAMALHO, J. D. Impacts of drought and temperature stress on coffee physiology and production. A review. Brazilian Journal of Plant Physiology, 18(1):55-81, 2006.

DAVIS, A. P. et al. High extinction risk for wild coffee species and implications for coffee sector sustainability. Science Advances, 5(1):eaav3473, 2019.

DAVIS, A. P.; RAKOTONASOLO, F. Six new species of coffee (Coffea) from northern Madagascar. Kew Bulletin, 76:497-511, 2021.

DE OLIVEIRA SANTOS, M. et al. Photochemical efficiency correlated with candidate gene expression promote coffee drought tolerance. Scientific Reports, 11(1):7436, 2021.

DIAS, P. C. et al. Morphological and physiological responses of two coffee progenies to soil water availability. Journal of Plant Physiology, 164:1639-1647, 2007.

ESKES, A.; BRAGHINI, M. T. Assessment methods for resistance to coffee leaf rust (Hemileia vastatrix Berk. & Br.). FAO Plant Protection Bulletin, 29:56-66, 1981.

FAHAD, S. et al. Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science, 8:1147, 2017.

FAOSTAT. Food and Agriculture Organization of the United Nations, Statistics Division. Available in: <http://faostat.fao.org/>. Access in: November, 16, 2021.

FEDERACIÓN NACIONAL DE CAFETEROS DE COLOMBIA. Estadísticas cafeteras. 2021a. Available in: <http://federaciondecafeteros.org/wp/estadisticas-cafeteras>. Access in: November, 2, 2021.

FEDERACIÓN NACIONAL DE CAFETEROS DE COLOMBIA. Sistema de información cafetero de Colombia. 2021b. Available in: <http://sica.cafedecolombia.com>. Access in: November, 8, 2021.

FERNANDES, F. L. et al. Economic injury level for the coffee berry borer (Coleoptera: Curculionidae: Scolytinae) using attractive traps in Brazilian coffee fields. Journal of Economic Entomology, 104(6):1909-1917, 2011.

GUEDES, F. A. et al. Transcriptional memory contributes to drought tolerance in coffee (Coffea canephora) plants. Environmental and Experimental Botany, 147:220-233, 2018.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE – IPCC. Climate change 2021: the physical science basis. Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change., 2021.

JARAMILLO, A.; ARCILA, J. Épocas recomendables para la siembra de cafetos. Avance Técnico, 229:1-8, 1996.

JARAMILLO, J. et al. Some like it hot: the influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa. PLoS ONE 6:e24528, 2011.

JARAMILLO, J. El balance hídrico. In: FNC-Cenicafé (eds. El clima de la caficultura en Colombia. Manizales, Colombia: Cenicafé, 2018, 120-140p.

KUFA, T.; BURKHARDT, J. Hydraulic resistances in seedlings of Coffea arabica accessions under contrasting shade regimes in southwestern Ethiopia. Journal of Agricultural Science, 151(05):682-692, 2013.

LABOUISSE, J. P. et al. Current status of coffee (Coffea arabica L.) genetic resources in Ethiopia: implications for conservation. Genetic Resources and Crop Evolution, 55:1079-1093, 2008.

MACHADO FILHO, J.A. et al. Linking root and stem hydraulic traits to leaf physiological parameters in Coffea canephora clones with contrasting drought tolerance. Journal of Plant Physiology, 258-259:153355, 2021.

MARRACCINI, P. et al. Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. Journal of Experimental Botany, 63:4191-4212, 2012.

MEYER, F. G. Notes on wild coffee arabica from southwestern Ethiopia, with some historical considerations. Economy Botany, 19:136-151. 1965.

MOLINA, D.; RAMÍREZ, V. H.; CORTINA, H. A. Comportamiento de accesiones de Coffea arabica sometidas a déficit de humedad del suelo. Cenicafé, 67(1):41-54, 2016.

MONCADA, M. P.; Cortina, H.; Alarcón, R. Cup quality and yield evaluation of the Ethiopian germplasm collection of CoffeaarabicaL., Journal of Agricultural and Rural Research, 3(3):100-126. 2019.

MONTAGNON, C.; BOUHARMONT, P. Multivariate analysis of phenotypic diversity of Coffea arabica. Genetic Resources and Crop Evolution, 43:221-227. 1996.

MONTAGNON, C.; CUBRY, P.; LEROY, T. Amélioration génétique du caféier Coffea canephora Pierre: connaissances acquises, stratégies et perspectives. Cahiers Agricultures, 21(2-3):143-53, 2012.

OCAMPO, O.; ÁLVAREZ, L. Tendencias de la producción y el consumo de café en Colombia. Cenes, 36(64):139-165, 2017.

OROZCO, F. J.; JARAMILLO, A. Comportamiento de introducciones de Coffea sometidas a condiciones de déficit de humedad del suelo. Cenicafé, 29:61-93, 1978.

OVALLE-RIVERA, O. et al. Projected Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to Climate Change. PLoSONE 10(4):e0124155. 2015.

PINHEIRO, H.A. et al. Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Annals of Botany, 96:101-108, 2005.

PUGLIELLI, G. et al. Global patterns of biomass allocation in woody species with different tolerances of shade and drought: evidence for multiple strategies. New Phytologist, 229(1):308-322, 2021.

ROONPRAPANT, P.; ARUNYANARK, A.; CHUTTEANG, C. Morphological and physiological responses to water deficit conditions of robusta coffee (Coffea canephora) genotypes in Thailand. Agriculture and Natural Resources, 55(3):473-484, 2021.

SILVA, P. E. M. et al. The functional divergence of biomass partitioning, carbon gain and water use in Coffea canephora in response to the water supply: implications for breeding aimed at improving drought tolerance. Environmental and Experimental Botany, 87:49-57, 2013.

VEIHMEYER, F. J.; HENDRICKSON, A. H. The relation of soil moisture to cultivation and plant growth. Soil Science, 3:498-513, 1927.

Downloads

Published

2022-07-12

How to Cite

MOLINA, D. M.; RIVERA, R. M. . Identifying Coffea genotypes tolerant to water deficit. Coffee Science - ISSN 1984-3909, [S. l.], v. 17, p. e171994, 2022. DOI: 10.25186/.v17i.1994. Disponível em: http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/1994. Acesso em: 30 sep. 2022.