Looking for adjustments to severe drought in coffee: Lessons of a rainfall exclusion plot in the Southern Brazil


  • Debora Valim da Silva Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais, Campus Machado, Departamento de Biologia, Machado, MG, Brasil. https://orcid.org/0000-0003-2967-5506
  • Vicente Luiz Naves Universidade Federal de Lavras, Departamento de Biologia, Setor Fisiologia Vegetal, Laboratório de Ecofisiologia Vegetal/LEV, Lavras, MG, Brasil. https://orcid.org/0000-0001-9206-8747
  • Mayra Alejandra Toro-Herrera Universidade Federal de Lavras, Departamento de Biologia, Setor Fisiologia Vegetal, Laboratório de Ecofisiologia Vegetal/LEV, Lavras, MG, Brasil. https://orcid.org/0000-0003-0389-1278
  • Daniel Amorim Vieira Universidade Federal de Lavras, Departamento de Biologia, Setor Fisiologia Vegetal, Laboratório de Ecofisiologia Vegetal/LEV, Lavras, MG, Brasil. https://orcid.org/0000-0001-7423-9629
  • Ane Marcela das Chagas Mendonça Universidade Federal de Sergipe, Programa de Pós-Graduação em Desenvolvimento e Meio Ambiente/PRODEMA, São Cristovão, SE, Brasil. https://orcid.org/0000-0003-1157-0044
  • Serge Rambal Centre d’Écologie Fonctionnelle et Évolutive CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 Route de Mende, 34293 Montpellier Cedex 5, France. https://orcid.org/0000-0001-5869-8382
  • João Paulo Rodrigues Alves Delfino Barbosa Universidade Federal de Lavras, Departamento de Biologia, Setor Fisiologia Vegetal, Laboratório de Ecofisiologia Vegetal/LEV, Lavras, MG, Brasil. https://orcid.org/0000-0002-2624-966X




Rainfall exclusion experiments allow us assessing the effects of environmental stresses such as long-term water limitations on both leaf and canopy structural traits. This work aimed to evaluate how leaf anatomical traits and canopy development of productive coffee trees change when submitted to more dry conditions in the southern region of Minas Gerais - Brazil. The experimental plots have been set up in a plantation area in which is growing Coffea arabica L. cv. Mundo Novo- IAC 379-19, in a completely randomized arrangement, composed by three treatments: Control (C) - no gutter system; Control plus roof (Ĉ) and Exclusion system (E). Leaf anatomical and canopy traits were determined within a year at the end of each season: late Spring- 2015 (Sp), and late Summer (Su), late Autumn (Au) and late Winter (Wi) - 2016. During the studied period the rainfall exclusion condition led to a reduction in the relative water content (RWC) of leaves. In the leaf-level, as the dry condition increase, the leaves invested in thicker cuticles, reduced xylem and phloem areas and smaller stomata, especially with the rainfall exclusion. In the canopy-level, there was a remarkable reduction in leaf area index (LAI) especially in the winter as a strategy of reduction of transpiratory area, when the availability of water decreased around 25%. In a context of reduced water availability due to effects of climate change, coffee trees may be able to present modifications at both levels, to cope with the effects of this abiotic stress.  

Key words: Adaptation strategies; Coffea arabica L.; Ecophysiology; Leaf anatomy; Seasonal patterns.


AGUSTÍ, J.; BLÁZQUEZ, M.A. Plant vascular development: mechanisms and environmental regulation. Cellular and Molecular Life Sciences, 77:3711-3728, 2020.

AKRAM, N. A. et al. Drought-induced anatomical changes in radish (Raphanus sativus L.) leaves supplied with trehalose through different modes. Arid Land Research and Management, 30(4):412-420. 2016.

ALLEN, R. G. et al. Crop evapotranspiration - Guidelines for computing crop water requirements (No. 56). FAO - Food and Agriculture Organization of the United Nations, Rome, Italy. 333: 65-78, 1998.

ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6):711-728, 2013.

BACELAR, E. A. et al. Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiology, 24(2):233-239, 2004.

BAIRD, A. S. et al. Comparative leaf growth strategies in response to low-water and low-light availability: variation in leaf physiology underlies variation in leaf mass per area in Populus tremuloides. Tree Physiology, 37:1140-1150, 2017.

BARBOSA, J. P. R. A. D. et al. Estimativa do IAF de cafeeiro a partir do volume de folhas e arquitetura da planta. Coffee Science, 7(3):267-274, 2012.

BATISTA, E. R. et al. Increased atmospheric CO2 combined with local climatic variation affects phenolics and spider mite populations in coffee trees. Anais da Academia Brasileira de Ciências, 93(3):1-18, 2021.

BATISTA, L. A. et al. Anatomia foliar e potencial hídrico na tolerância de cultivares de café ao estresse hídrico. Revista Ciência Agronômica, 41:475-481, 2010.

BINKS, O. et al. Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees, Tree Physiology, 36(12):1550-1561, 2016.

BOSABALIDIS, A. M.; KOFIDIS, G. Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Science, 163:375-379, 2002.

CAMARGO, M. B. P. O impacto da variabilidade climática e das mudanças climáticas na cultura do café arábico no Brasil. Bragantia, 69(1):239-247, 2010.

CASTRO, E. M. et al. Histologia vegetal: estrutura e função de órgãos vegetativos. Lavras: UFLA, 2009. 234p.

DAMATTA, F. M. et al. Physiological and Agronomic Performance of the Coffee Crop in the Context of Climate Change and Global Warming: A Review. Journal of Agricultural and Food Chemistry, 66(21):5264-5274. 2018.

DAMATTA, F. M. et al. Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology, 19:485-510. 2007.

DAMATTA, F. M.; RAMALHO, J. D. C. Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian Journal of Plant Physiology, 18(1):55-81, 2006.

DAS, R. et al. Relative performance of plant cultivars under respective water deficit adaptation strategies: A case study. Current World Environment, 10:683-690, 2015.

DIAS, P. C. et al. Crescimento e alocação de biomassa em duas progênies de café submetidas a déficit hídrico moderado. In: SIMPÓSIO DE PESQUISA DOS CAFÉS DO BRASIL 4., Londrina, PR, Resumos expandidos, Brasília, DF: Embrapa Café, 2005.

DOUGHTY, C. E.; GOULDEN, M. L. Seasonal patterns of tropical forest leaf area index and CO2 exchange. Journal of Geophysical Research, 113, G00B06. 2008.

DUBBERSTEIN, D. et al. Resilient and Sensitive Key Points of the Photosynthetic Machinery of Coffea spp. to the Single and Superimposed Exposure to Severe Drought and Heat Stresses. Frontiers in Plant Science, 11,1049. 2020.

FAO - United Nations Food and Agriculture Organization. ETo Calculator. Available in: <http://www.fao.org/land-water/databases-and-software/eto-calculator/es/>. Access in: Jun. 2019.

FERNÁNDEZ-DE-UÑA, L. et al. Xylem and leaf functional adjustments to drought in Pinus sylvestris and Quercus pyrenaica at Their Elevational Boundary. Frontiers in Plant Science, 8:1200.1-12, 2017.

FRANKS, P. J. et al. Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytologist, 207(1):88-195, 2015.

GILES, J. A. D. et al. Divergence and genetic parameters between Coffea sp. Genotypes based in foliar morpho-anatomical traits. Scientia Horticuturae, 245:231-236, 2019.

GRISI, F. A. et al. Avaliações anatômicas foliares em mudas de café ‘Catuaí’ e ‘Siriema’ submetidas ao estresse hídrico. Ciência e Agrotecnologia, 32:1730- 1736, 2008.

GUEDES, F. A. de F. et al. Transcriptional memory contributes to drought tolerance in coffee (Coffea canephora) plants. Environmental and Experimental Botany. 147: 220–233, 2018.

HAFFANI, S. et al. Comparative leaf water relations and anatomical responses of three vetch species (Vicia narbonensis L., V. sativa L. and V. villosa Roth.) to cope with water stress. Crop & Pasture Science, 68:691-702. 2017.

INMET - Instituto Nacional de Meteorologia. BDMEP - Gráficos Climatológicos (1961-1990). Available in: <http://www.inmet.gov.br/portal/index.php?r=clima/graficosClimaticos>. Access in: Apr. 2020.

IPCC. Geneva. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: Cambridge University Press, 151p., 2014.

JOHANSEN, D. A. Plant microtechnique. McGraw-Hill, USA. Nature.147,222, 1941.

LÄDERACH, P. et al. Climate change adaptation of coffee production in space and time. Climatic Change, 141:47-62, 2017.

MARSAL, J. et al. Factors involved in alleviating water stress by partial crop removal in pear trees. Tree physiology, 28:1375-82, 2008.

MARTIN-STPAUL, N. K. et al. The temporal response to drought in a Mediterranean evergreen tree: comparing a regional precipitation gradient and a throughfall exclusion experiment. Global Change Biology, 19(8):2413-2426, 2013.

MATOS, M. C. et al. Drought effect on photosynthetic activity, osmolyte accumulation and membrane integrity of two Cicer arietinum genotypes. Photosynthetica, 48:303-312, 2010.

MORAIS, H. et al. Modifications on leaf anatomy of Coffea arabica caused by shade of pigeonpea (Cajanus cajan). Brazilian Archives of Biology and Technology, 47:863-871, 2004.

MORANDI, B. et al. Increasing water stress negatively affects pear fruit growth by reducing first its xylem and then its phloem inflow. Journal of Plant Physiology, 171(16):1500-1509, 2014.

MOSER, G. et al. Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought. Global Change Biology, 20(5):1481-1497, 2014.

OUYANG, W. et al. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. Journal of Experimental Botany. 68(18):5191-5205, 2017.

PFEIFER, M. et al. Tropical forest canopies and their relationships with climate and disturbance: results from a global dataset of consistent field-based measurements. Forest Ecosystems, 5(7):1-14, 2018.

POORTER, H. et al. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis [published correction appears in New Phytol. 183(4):1222]. New Phytologist, 182 (3), 565-588, 2009.

QUEIROZ-VOLTAN. et al. Caracterização da anatomia foliar de cafeeiros arábica em diferentes períodos sazonais. Biotemas, 27:1-10, 2014.

RODRIGUES, W. P. et al. Long-term elevated air [CO2] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical Coffea arabica and C. canephora species. Global Change Biology, 22:415-431, 2016.

SOREK, Y. et al. An increase in xylem embolism resistance of grapevine leaves during the growing season is coordinated with stomatal regulation, turgor loss point, and intervessel pit membranes. New Phytologist, 229(4):1955-1969, 2021.

SOUZA, A. J. J. et al. Quantitative analysis of growth in coffee plants cultivated with a water-retaining polymer in an irrigated system. Revista Ciência Agronômica, 47(1):162-171, 2016.

TOMASELLA, M. et al. Acclimation of branch and leaf hydraulics in adult Fagus sylvatica and Picea abies in a forest through-fall exclusion experiment. Tree Physiology, 38(2):198-211, 2018.

TRIBULATO, A. et al. Effects of Water Stress on Gas Exchange, Water Relations and Leaf Structure in Two Ornamental Shrubs in the Mediterranean Area. Agronomy, 9(7):381, 2019.

VAN BEL, A. J. E. The phloem, a miracle of ingenuity. Plant, Cell & Environment, 26:125-149, 2003.

VENEKLAAS, E. J.; Poot, P. Seasonal patterns in water use and leaf turnover of different plant functional types in a species-rich woodland, south-western Australia. Plant and Soil, 257:295-304, 2003.

WOODRUFF, D. R. The impacts of water stress on phloem transport in Douglas-fir trees. Tree Physiology, 34(1):5-14, 2014.

ZAMBOLIM, L. et al. Seca de ramos do cafeeiro - fatores bióticos e abióticos. In: Zambolim, L. Boas práticas agrícolas na produção de café. Viçosa: UFV. p.1-60, 2006.

ZHAO, W. et al. Response of stomatal density and bound gas exchange in leaves of maize to soil water deficit. Acta Physiologiae Plantarum, 37, 1704, 2015.




How to Cite

SILVA , D. V. da; NAVES , V. L. .; TORO-HERRERA , M. A. .; VIEIRA, D. A.; MENDONÇA , A. M. das C.; RAMBAL , S. .; BARBOSA , J. P. R. A. D. Looking for adjustments to severe drought in coffee: Lessons of a rainfall exclusion plot in the Southern Brazil. Coffee Science - ISSN 1984-3909, [S. l.], v. 17, p. e172015, 2022. DOI: 10.25186/.v17i.2015. Disponível em: http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/2015. Acesso em: 26 jan. 2023.