Water, energy and carbon dynamics over an intercropped sun-grown coffee and corn system





The energy dissipation and the evapotranspiration processes, are factors involved in the ecosystem net carbon exchange and are determinants in the ability of a self-regulating system to balance high carbon emissions. To discover these relationships, a corn production system intercropped with coffee was monitored during the first 19 months after the system establishment, to determine the flux of energy, water, gases, and carbon by implementing the eddy covariance technique. From the net carbon exchange ecosystem balance, during the first cycle of corn intercropped with coffee, 63 g C m-2 was fixed. For the next phase of coffee culture, maintaining the corn stalks and coffee branches, 5.4 g C m-2 was emitted. In the second cycle with intercropped corn, the
fixation was 291 g of C m-2; and in the last period of the first reproductive stage of the coffee trees, 172 g C m-2 was fixed. Throughout the analysis period, the system behaved as a carbon sink with a potential fixation between 4.7 and 5.6 ton C ha-1. The energy, measured as net radiation, was estimated at 274.53 ± 5.2 W m-2 day-1, and it was dissipated mainly as sensible heat (26.5% - 53.6%), latent heat (45.7% - 71, 9%) and soil heat (0.5% - 1.6%). The crop coefficient (Kc) in the coffee vegetative stage in the monoculture, fluctuated between 0.79 ± 0.05 and 0.99 ± 0.04. For the intercropping system with corn, the Kc was calculated at 0.84 ± 0.05, 1.05 ± 0.06, 1.60 ± 0.09, and 1.22 ± 0.05 for the vegetative, pre-flowering, maximum foliar development and harvest maturity stages of corn, respectively.

Key words: Eddy covariance; Net ecosystem exchange; Evapotranspiration; Water fluxes; Carbon dioxide fluxes.


ALLEN, R. et al. Evapotranspiración del cultivo: guías para la determinación de los requerimientos de agua de los cultivos. Roma: FAO, 2006. 299p.

ALMEIDA, V. et al. Trocas gasosas de cafeeiros (Coffea arabica) em altas temperaturas no Cerrado goiano. Research, Society and Development, 9(11):1-16, 2020.

ANTUNES, R. et al. Determinação da evapotranspiração da cultura do cafeeiro em formação. Anais do I Simpósio de Pesquisa dos Cafés do Brasil, p.810-813, 2000.

BAKER, J.; GRIFFIS, T. Examining strategies to improve the carbon balance of corn/soybean agriculture using eddy covariance and mass balance techniques. Agricultural and Forest Meteorology, 128(3):163-177, 2005.

BALDOCCHI, D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 9(4):479-492, 2003.

BALDOCCHI, D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere - the state and future of the eddy covariance method. Global Change Biology, 20(12):3600-3609, 2014.

CASTAÑO, A. et al. Energy, water vapor and carbon fluxes in Andean agroecosystems: conceptualization and methodological standardization. Acta Agronómica, 66(1):2016.

CASTAÑO, A. et al. Evapotranspiration and crop coefficients for coffee production systems in Colombia using the eddy covariance method. Agronomy Journal, v. 114, n. 1, p.678-688, 2022.

CENTRO NACIONAL DE INVESTIGACIONES DE CAFÉ. Guía más agronomía más productividad. 2. ed. Manizales: Cenicafé, 2018. 111p.

CHÁVEZ, J.; HOWELL, T.; COPELAND, K. Evaluating eddy covariance cotton ET measurements in an advective environment with large weighing lysimeters. Irrigation Science, 28(1):35-50, 2009.

CISNEROS, E. et al. Evapotranspiración y coeficientes de cultivo para el cafeto en la provincia de Pinar del Río. Revista Ciencias Técnicas Agropecuarias, 24(2):23-30, 2015.

COSTA, J. et al. Tensiometria aplicada na estimativa do consumo hídrico do cafeeiro irrigado por gotejamento. Revista Geama, 6(2):17-24, 2020.

DABADIE, M. et al. Calibración del método de pérdida de peso por ignición para la estimación del carbono orgánico en Inceptisoles del NE de Entre Ríos. Revista de la Facultad de Agronomía, 117(1):157-162, 2018.

DOORENBOS, J.; PRUITT, W. Guidelines for predicting crop water requirements. FAO ed. Roma: FAO. p.1-145, 1977.

FACCHI, A. et al. Determination of maize crop coefficients in humid climate regime using the eddy covariance technique. Agricultural Water Management, 130:131-141, 2013.

FAO. La estrategia de la FAO sobre el cambio climático. p.52, 2017. Available in: <https://www.bosquesandinos.org/wp-content/uploads/2017/08/FAO-estrategia-cc.pdf>.

FEDERACIÓN NACIONAL DE CAFETEROS et al. Nama café de Colombia: Acción de Mitigación Nacionalmente Apropiada (NAMA) en el Sector Cafetero de Colombia (Low Emission Capacity Building Programme). Manizales: FNC, 2017. Available in: <http://hdl.handle.net/10778/4255>.

FLUMIGNAN, D.; DE FARIA, R.; PRETE, C. Evapotranspiration components and dual crop coefficients of coffee trees during crop production. Agricultural Water Management, 98(5):791-800, 2011.

FOKEN, T. et al. Corrections and data quality control. In: AUBINET, M.; VESALA, T.; PAPALE, D. (Eds.). Eddy Covariance. Dordrecht: Springer Netherlands. p.85-131, 2012.

FOKEN, T. Experimental methods for estimating the fluxes of energy and matter. In: Micrometeorology. Berlin, Heidelberg: Springer Berlin Heidelberg. p.143-205, 2017.

GILMANOV, T. et al. Productivity, respiration, and light-response parameters of world grassland and agroecosystems derived from flux-tower measurements. Rangeland Ecology & Management, 63(1):16-39, 2010.

GOUDRIAAN, J.; MONTEITH, J. A Mathematical function for crop growth based on light interception and leaf area expansion. Annals of Botany, 66(6):695-701, 1990.

GUTIÉRREZ, M.; MEINZER, F. Estimating water use and irrigation requirements of coffee in hawaii. Journal of the American Society for Horticultural Science, 119(3):652-657, 1994.

JARAMILLO, A.; ESCOBAR, B. Balance de energía en /Coffea arábica/ L. Revista Cenicafé, 34(4):115-126, 1983.

JARAMILLO, S.; SALAZAR, H. Cultivos intercalados: una alternativa para aumentar los ingresos y la sostenibilidad de cafetales. Avances Técnicos Cenicafé, 534:1-8, 2021.

LASSLOP, G. et al. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global Change Biology, 16(1):187-208, 2010.

LEE, X.; FINNIGAN, J.; PAW, K. Coordinate Systems and Flux Bias Error. In: LEE, X.; MASSMAN, W.; LAW, B. (Eds.). Handbook of Micrometeorology. Atmospheric and Oceanographic Sciences Library. Dordrecht: Kluwer Academic Publishers, v. 29, p.33-66, 2004.

LEE, X.; MASSMAN, W.; LAW, B. (Eds.). Handbook of micrometeorology. Dordrecht: Springer Netherlands, v. 29, 2005.

LI-COR BIOSCIENCES. Eddy covariance processing software: EddyPro 6.2.1. U.S.: LI-COR Biosciences, 2017. Available in: <https://www.licor.com/env/products/eddy_covariance/eddypro>.Access in: December 14, 2022

MONCRIEFF, J. B.; JARVIS, P. G.; VALENTINI, R. Canopy Fluxes. In: SALA, O. et al. Methods in Ecosystem Science. New York: Springer, p. 161-180, 2000.

MONCRIEFF, J. et al. Averaging, detrending, and filtering of eddy covariance time series. In: LEE, X.; MASSMAN, W.; LAW, B. (Eds.). Handbook of Micrometeorology. Dordrecht: Kluwer Academic Publishers. v. 29, p.7-31, 2004.

OLIVEIRA, P. SILVA, A.; CASTRO, P. Estimativa da evapotranspiração e do coeficiente de cultura do cafeeiro (Coffea arabica L.). Irriga, 8(3):273-282, 2003.

PÉREZ, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3):167-234, 2013.

RAMÍREZ, V.; JARAMILLO, A. Balances de energía asociados a los cambios de cobertura en la zona andina colombiana. Revista Cenicafé, 60(3):199-209, 2009.

RANA, G. et al. Carbon assimilation and water use efficiency of a perennial bioenergy crop (Cynara cardunculus L.) in Mediterranean environment. Agricultural and Forest Meteorology, 217:137-150, 2016.

REICHSTEIN, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11(9):1424-1439, 2005.

RENDÓN, J. Administración de sistemas de producción de café a libre exposición solar. In: CENTRO NACIONAL DE INVESTIGACIONES DE CAFÉ (Ed.). Manejo Agronómico de los Sistemas de Producción de Café. Manizales: Cenicafé. p.34-71, 2020.

ROSENBERG, N.; BLAD, B.; VERMA, S. Microclimate: The biological environment. 2nd ed ed. New York: Wiley, 1983. 528 p.

SALA, O. et al. Methods in ecosystem science. New York, NY: Springer New York, 2000.

SATO, F. et al. Coeficiente de cultura (Kc) do cafeeiro (Coffea arabica L.) no período de outono-inverno na região de Lavras - MG. Engenharia Agrícola, 27(2):383-391, 2007.

TAGESSON, T. et al. Dynamics in carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa. Agriculture, Ecosystems & Environment, 205:15-24, 2015.

VICKERS, D.; MAHRT, L. Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and Oceanic Technology, 14:512-526, 1997.

WEBB, E.; PEARMAN, G.; LEUNING, R. Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106(447):85-100, 1980.




How to Cite

LÓPEZ, J. C. G. .; HERRERA, N. G. S.; CARABALÍ, C. R.; BOHÓRQUEZ, J. P. C.; BEJARANO, N. C. F.; CHAURRA, D. A. F. Water, energy and carbon dynamics over an intercropped sun-grown coffee and corn system. Coffee Science - ISSN 1984-3909, [S. l.], v. 17, p. e172030, 2022. DOI: 10.25186/.v17i.2030. Disponível em: http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/2030. Acesso em: 26 jan. 2023.