Effect of indole-3-acetic acid on growth, physiology and nutritional status of young arabica coffee plants


  • Wellington Abeldt Erlacher Universidade Federal do Espírito Santo/UFES - Departamento de Agronomia, Domingos Martins, ES, Brasil. https://orcid.org/0000-0002-3224-999X
  • José Francisco Teixeira do Amaral Universidade Federal do Espírito Santo/UFES - Departamento de Engenharia Agrícola, Alegre, ES, Brasil. https://orcid.org/0000-0003-3027-4830
  • José Augusto Teixeira do Amaral Universidade Federal do Espírito Santo/UFES - Departamento de Agronomia, Alegre, ES, Brasil. https://orcid.org/0000-0001-7843-5600
  • Bruno Fardim Christo Universidade Federal de Santa Catarina/ UFSC- Departamento de Administração, Florianópolis, SC, Brasil. https://orcid.org/0000-0003-3595-4691
  • Daniel Soares Ferreira Universidade Federal de Viçosa - UFV- Departamento de Agronomia, Viçosa, MG, Brasil. https://orcid.org/0000-0003-3428-4964
  • Sandro Dan Tatagiba Instituto Federal Catarinense - Campus Videira, Videira, SC, Brasil. https://orcid.org/0000-0002-9827-336X
  • Brunno Cesar Pereira Rocha Universidade Federal de Viçosa - UFV- Departamento de Agronomia, Viçosa, MG, Brasil.. https://orcid.org/0000-0003-2210-9069
  • Marcelo Antonio Tomaz Universidade Federal do Espírito Santo/UFES - Departamento de Agronomia, Alegre, ES, Brasil. https://orcid.org/0000-0002-9228-7541
  • Wagner Nunes Rodrigues Centro Universitário UNIFACIG, Manhuaçu, MG, Brasil. https://orcid.org/0000-0002-4830-0040
  • Fábio Luiz Partelli Universidade Federal do Espírito Santo/UFES, Departamento de Ciências Agrárias e Biológicas/DCAB, São Mateus, ES, Brasil. https://orcid.org/0000-0002-8830-0846




Coffee is one of the main agricultural commodities in the world. Thus, research aimed at reducing the productive risks of the crop has been increasingly encouraged, among which the use of plant hormones stands out. In addition, the objective of this work was to analyze the effect of the application of indole-3-acetic acid on the growth, nutrition and gas exchange of young Coffea arabica L plants. The experiment was carried out in the field in the city of Alegre, Espírito Santo, Brazil. The experimental design used was randomized blocks, testing the effect of the application of five doses of indole-3-acetic acid in young Arabica coffee plants, in four replications. The application of indole-3-acetic acid stimulates the growth rate of the stem diameter at a concentration of 60 mg L-1, as well as gas exchange in coffee plants, however it did not favor the increase in the substomatic concentration of CO2 instantaneous
and intrinsic efficiency in water use and instantaneous carboxylation efficiency. Although the application of EIA was not able to provide direct gains in coffee growth during the experimental period, a longer evaluation of the treatments would possibly provide promising results for the coffee crop. The multivariate analysis showed that higher doses of auxin have a high relationship with the macronutrients studied.
Key words: Gas exchange; auxin; hormonal balance; AIA; Coffea arabica L.


AHMAD, A. et al. Photosynthetic efficiency of plants of Brassica Juncea, Treated with chlorosubstituted auxins. Photosynthetica, 39:565-568, 2001.

ALBACETE, A. A. et al. Hormonal and metabolic regulation of source–sink relations under salinity and drought: From plant survival to crop yield stability. Biotechnology Advances, 32:12-30, 2014.

ALVARES, C. A. et al. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22(6):711-728, 2013.

AMARAL, J. A. T. et al. Crescimento vegetativo sazonal do cafeeiro e sua relação com fotoperíodo, frutificação, resistência estomática e fotossíntese. Pesquisa Agropecuária Brasileira, 41(3):377-384, 2006.

ASHIKARI, M. et al. Cytokinin oxidase regulates rice grainproduction. American Association for the Advancement of Science, 309(5735):741-745, 2005.

BACILIERI, F. S. et al. Efficacy of a plant growth regulator in the culture of coffee. Bioscience Journal, 32(2):346-353, 2016.

BAGYARAJ, D. J. et al. Below ground microbial diversity as influenced by coffee agroforestry systems in the Western Ghats, India. Agriculture, Ecosystems and Environment, 202:198-202, 2015.

BARBOSA, I. P. et al. Recommendation of Coffea arabica genotypes by factor analysis. Euphytica, 215(178):1-10, 2019.

BARBOSA, I. P. et al. Sensory analysis of arabica coffee: cultivars of rust resistance with potential for the specialty coffee market. Euphytica, 216:165, 2020.

BARROS, R. S. et al. Decline of vegetative growth in Coffea arabica L. in relation to leaf temperature, water potential and stomatal conductance. Field Crops Research 54(1):65-72, 1997.

BLUMM, A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research, 112:119-123, 2009.

BOHÓQUEZ, C. A. A. et al. Kinetic parameters of nitrate absorption by adult coffee trees. Frontiers in Sustainable Sood Systems, 21:677580, 2021.

BUNN, C. et al. Bitter cup: Climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 129:89-101, 2015.

BUONO, D. D. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Science of The Total Environment, 751(10):141763, 2021.

CAMARGO, M. B. P. The impact of climatic variability and climate change on Arabic coffee crop in Brazil. Bragantia, 69(1):239-247, 2010.

CAVALCANTI FILHO, P. F. M. et al. Effect of Growth Regulators in Production and Rooting of Coffea arabica L. Minicuttings. American Journal of Plant Sciences. 9(4):628-636, 2018.

COMPANHIA NACIONAL DE ABASTECIMENTO - CONAB. Acompanhamento da safra brasileira 2022. 9(3): 1-66. 2022.

https://www.conab.gov.br/info-agro/safras/cafe/boletim-da-safra-de-cafe. Access in: January 2, 2023.

COSTA, N. R. et al. Desempenho do cafeeiro Icatu vermelho sob ação de biorregulador aplicado em fases reprodutivas da cultura. Agrarian, 2(5):113-130, 2009.

DAVIS, A. P, et al. Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data implications for the size, morphology, distribution and evolutionary history of Coffea. Botanical Journal of the Linnean Society, 167(4):357-377, 2011.

DONG, C. G. et al. ADF Proteins Are involved in the control of flowering and regulate f-actin organization, cell expansion, and organ growth in arabidopsis. The Plant Cell, 13(6):1333-1346, 2001.

FERREIRA, D. Estatística multivariada. 3.ed. Lavras: Editora UFLA. 2018. 642p.

FERREIRA, D. S. et al. Biochemical and physiological changes in conilon coffee grown under different levels of irradiance. Australian Journal of Croop Science, 15(7):1074-1080, 2021a.

FERREIRA, D. S. et al. Exploring the multivariate technique in the discrimination of Coffea arabica L. cultivars regarding the production and quality of grains under the effect of water management. Euphytica, 217:118, 2021b.

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS-FAO. Food Outlook - Biannual Report on Global Food Markets. Retrieved from. 2019. Available in: http://www.fao.org/documents/card/en/c/ca4526en. Access in: January 2, 2023.

LIANG, T. et al. Topping Inhibited Potassium Uptake via Regulating Potassium Flux and Channel Gene Expression in Tobacco. Agronomy. 12(5): 1166, 2022.

HATANAKA, T. et al. Effect of plant growth regulators on somatic embryogenesis in leaf cultures of Coffea canephora. Plant Cell Reports, 10:179-182, 1991.

HAYAT, Q. et al. Auxin analogues and nitrogen metabolism, photosynthesis, and yield of chickpea. Journal of Plant Nutrition, 32:1469-1485, 2009.

HUAN, Y. et al. Effects of indole acetic acid on the growth and selenium absorption characteristics of Cyphomandrabetacea seedlings. Acta Physiologiae Plantarum, 43(24):74, 2021.

KHAN, N. et al. Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regulation, 90:89-203, 2020.

KRISHNAN S, et al. An assessment of the genetic integrity of ex situ germplasm collections of three endangered species of Coffea from Madagascar: Implications for the management of field germplasm collections. Genetic Resources and Crop Evolution, 60:1021-1036, 2013.

LANI, J. A. et al. Cafeeiro. In: PREZOTTI LC, G. J. A. et al.Manual de recomendação de calagem e adubação para o Estado do Espírito Santo (5ª aproximação). Vitoria: SEEA/INCAPER/CEDAGRO. p. 111-118, 2007.

LI, H, et al. Effects of mutual grafting on cadmium accumulation characteristics of first post-generations of Bidens pilosa L. and Galinsoga parviflora Cav. Environmental Science and Pollution Research, 26: 33228-33235, 2019a.

LI, J. et al. Effects of exogenous IAA in regulating photosynthetic capacity, carbohydrate metabolism and yield of Zizania latifolia. Scientia Horticulturae. 253(27): 276-285. 2019b.

LIU, Q. et al. Effects of different rootstocks on cadmium accumulation of grafted Cyphomandrabetacea seedlings. International Journal of Environmental Analytical Chemistry, 99(12):1247-1254, 2018.

MACHADO, L. S. et al. Efficiency and response of conilon coffee genotypes to nitrogen supply. African Journal of Biotecnology, 1535:1892-1898, 2016.

MARSCHNER, H. Mineral nutrition of higher plants. San Diego: Academic Press, 1995. 889p.

MARTINEZ, H. E. P. et al. Water deficit changes nitrate uptake and expression of some nitrogen related genes in coffee-plants (Coffea arabica L.). Scientia Horticulturae, 267:109254, 2020.

MARTINS, L. D, et al. Carbon and water footprints in Brazilian coffee plantations - the spatial and temporal distribution. Journal of Food and Agriculture, 30:482-482, 2018.

MIAO, Y. M. et al. Effects of IAA and GA3 on melon growth and photosynthesis under low light stress. Mol Plant Breeding, 16:2335-2340, 2018.

MOREIRA, T. R. et al. Quality determinants in coffee production. food engineering series. In: PEREIRA, L. L.; MOREIRA, T. R. Global warming and the effects of climate change on coffee production. Springer, Cham, 2021.

MULIASARI, A. A. et al. Improvement generative growth of Coffea arabica L. using plant growth regulators and pruning. E3S Web of Conferences, 226:00003, 2021.

MWANIKI, W. I. et al. Effects of genotype and plant growth regulators on callus induction in leaf cultures of Coffea arabica L. F1 hybrid. African Journal of Biotechnology, 18(31):1004-1015, 2019.

NAZARENO, R. B. et al. Crescimento inicial do cafeeiro Rubi em resposta a doses de nitrogênio, fósforo e potássio e a regimes hídricos. Pesquisa Agropecuária Brasileira, 38(8):903-910, 2003.

PARTELLI, F. L. et al. Diagnosis and recommendation integrated system norms, sufficiency range, and nutritional evaluation of arabian coffee in two sampling periods. Journal of Plant Nutrition, 30:1651-1667, 2007.

PU, C. H. et al. Modified QuEChERS method for 24 plant growth regulators in grapes using LC-MS/MS. Journal of Food and Drug Analysis, 26(2):637-648, 2018.

QUISEN, R. C.; ANGELO, P. C. S. Manual de procedimentos do laboratório de cultura de tecidos da Embrapa Amazônia Ocidental. (Embrapa Amazônia Ocidental. Documentos, 61). Manaus: Embrapa Amazônia Ocidental, 2008, 44p.

R CORE TEAM R. Language and enviromental for statitiscal computing. R core team. R language and enviromental for statitiscal computing. R Foundation for Statistical. 2021. Version.string R version 4.0.0. Vienna, Austria. Available in: . Access in: January 2, 2023.

RIBEIRO, W. R. et al. Crescimento do cafeeiro conilon cultivar “ES 8122-Jequitibá” em função da fração de água transpirável no solo. IRRIGA, 24(3):512-526, 2019.

RONCHI, C. P. et al. Respostas ecofisiológicas de cafeeiros submetidos ao deficit hídrico para concentração da florada no Cerrado de Minas Gerais. Pesquisa Agropecuária Brasileira, 50(1):24-32, 2015.

SANTNER, A. et al. Plant hormones are versatile chemical regulators of plant growth. Nature Chemical Biology, 5(5):301-307, 2009.

SASI, M. et al. Plant growth regulator induced mitigation of oxidative burst helps in the management of drought stress in rice (Oryza sativa L.). Environmental and Experimental Botany, 185:104413, 2021.

SILVA, F. C. Manual de análise química de solos, plantas e fertilizantes. 2ª edição revisada e ampliada. Brasília: Embrapa, 2009. 627p.

SILVA FILHO, M. J. et al. Efeito de bioestimulantes no cafeeiro. Nucleus, 9(2):275-280, 2012.

TAIZ, L. et al. Fisiologia e desenvolvimento vegetal. 6 ed. 59 Porto Alegre: Artmed, 2017: 584p.

TATAGIBA, S. D. et al. Variabilidade diurna e sazonal das trocas gasosas e do potencial de água das folhas de clones de Eucalyptus. Engenharia na Agricultura, 16(2):225-237, 2008.

UNIVERSIDADE FEDERAL DE VIÇOSA - UFV. Sistema para análises estatísticas e genéticas – SAEG. Versão 9.1. Viçosa/MG: Fundação Arthur Bernardes, 2007.

WADAEY, Y. A. et al. Isolation and characterization of plant growth-promoting rhizobacteria from coffee plantation soils and its influence on maize growth. Applied and Environmental Soil Science, Article ID 5115875, 2022.

WU, H. T. et al. Effects of different concentrations of auxin on onion root tip growth. Agri Tech Equipment, 335:12-14, 2017.

YAO, H. et al. Effects of mutual grafting on the cadmium accumulation characteristics of two ecotypes of Solanum photeinocarpum. International Journal Phytoreme, 21(5):503-508, 2019.

YE, Q. H. et al. Effect of root soaked with auxins on the growth and chlorophyll fluorescence characteristics of Chinese olive seedlings. Acta Botan Boreali Occidentalia, 39:831-839, 2019.

ZABINI, V. A. et al. Chemical analyses of flowers and leaves for nutritional diagnoses of coffee trees. Ciência Rural, 51(7):e2019079, 2021.

ZHAO, S. H. et al. Effect of indoleacetic acid on photosynthesis of arsenic-stressed plants with different arsenic-accumulating ability. Journal of Agro-Environment Science, 36(4):1093-1101, 2017.

ZOU, F. K. et al. Auxin which regulates plant growth and development. Chinese Agricultural Science Bulletin, 34: 34-40, 2018.




How to Cite

ERLACHER, W. A. .; AMARAL, J. F. T. do .; AMARAL, J. A. T. do .; CHRISTO, B. F. .; FERREIRA, D. S.; TATAGIBA, S. D. .; ROCHA, B. C. P. .; TOMAZ, M. A. .; RODRIGUES, W. N.; PARTELLI, F. L. . Effect of indole-3-acetic acid on growth, physiology and nutritional status of young arabica coffee plants. Coffee Science - ISSN 1984-3909, [S. l.], v. 17, p. 172050, 2023. DOI: 10.25186/.v17i.2050. Disponível em: http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/2050. Acesso em: 26 jan. 2023.